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a b s t r a c t

In order to obtain a reasonably accurate model for the spread of a particular infectious disease through a
population, it may be necessary for this model to possess some degree of structural complexity. Many
such models have, in recent years, been found to exhibit a phenomenon known as backward bifurcation,
which generally implies the existence of two subcritical endemic equilibria. It is often possible to refine
these models yet further, and we investigate here the influence such a refinement may have on the
dynamic behaviour of a system in the region of the parameter space near R0 ¼ 1.

We consider a natural extension to a so-called Core Group model for the spread of a sexually transmit-
ted disease, arguing that this may in fact give rise to a more realistic model. From the deterministic view-
point we study the possible shapes of the resulting bifurcation diagrams and the associated stability
patterns. Stochastic versions of both the original and the extended models are also developed so that
the probability of extinction and time to extinction may be examined, allowing us to gain further insights
into the complex system dynamics near R0 ¼ 1. A number of interesting phenomena are observed, for
which heuristic explanations are provided.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

When using a system of deterministic differential equations to
model the spread of an infectious disease within a population it
is possible, by keeping all but one of the system parameter values
fixed, to obtain a diagram showing how the endemic and the dis-
ease-free equilibrium solutions change as the remaining parame-
ter, a say, is varied. For some particular value of a this diagram
indicates a change in the qualitative behaviour of the system, at
which point the disease-free equilibrium (DFE) bifurcates into a
branch representing an endemic equilibrium and a further branch
of the DFE. The parameter a and its associated graph are, as a con-
sequence, known as a bifurcation parameter and bifurcation dia-
gram, respectively. The point at which this change in behaviour
occurs is termed the bifurcation point, and the curve emanating
from it the bifurcation curve.

By considering the basic reproduction ratio R0 for the system it is
straightforward to obtain the location of the bifurcation point. The
basic reproduction ratio is defined to be the expected number of
secondary cases produced in a population at the DFE by a typical
infective individual during his or her entire infectious period. In
general R0 will be a function of the system parameters (see Diek-
mann et al. [10] for a precise mathematical formulation), and the
value of a at the bifurcation point corresponds to R0 ¼ 1.

The bifurcation diagrams of simple epidemic models always
display forward bifurcation. In this case the bifurcation curve is
such that as one moves along it from the bifurcation point, the le-
vel of infection increases as R0 increases, and the disease is able
to persist in the population when R0 > 1 but dies out otherwise.
In recent years, however, a phenomenon known as backward
bifurcation has emerged whereby the disease can, for certain
parameter values, persist even when R0 6 1. In this case the ini-
tial direction of the bifurcation curve is such that as one moves
along it from the bifurcation point, R0 decreases as the level of
infection increases. It seems that the potential for the existence
of backward bifurcation in an epidemic model was first noted
in similar papers by Castillo-Chavez et al. [5] and Castillo-Chavez
et al. [6], and Huang et al. [18]. Some of the more recent papers in
this area include those by Castillo-Chavez and Song [7], Brauer
[4], Feng et al. [11] and Song et al. [27]. An extensive literature
survey of epidemic models exhibiting this phenomenon was car-
ried out by Griffiths [15].

The presence of backward bifurcation indicates the existence of
two or more endemic equilibria for R0 < 1, known as subcritical en-
demic equilibria. It has been demonstrated in some models exhibit-
ing backward bifurcation (see Greenhalgh et al. [13], for example)
that there is the possibility for subcritical endemic equilibria to be
locally asymptotically stable (LAS). This certainly has implications
for disease control since the classical requirement for the eradica-
tion of the disease is no longer satisfied in such cases. It is now pos-
sible for the proportion of infected individuals in the population to
remain at a steady level or even invade when R0 6 1.
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The phenomenon of backward bifurcation tends to arise in rel-
atively complex deterministic epidemic models, often ones pos-
sessing some sort of group structure. Such models may, for
example, incorporate disease-driven changes in behaviour or take
account of the fact that the disease has several stages. Despite their
complexity, many of these models may still be regarded as over-
simplified representations of the progress of the disease through
a population. In such cases it might be possible to extend the mod-
el in a natural way, thereby giving a better approximation to the
true disease structure. Indeed, Greenhalgh and Griffiths [14] ar-
gued that a three-stage model for the spread of bovine respiratory
syncytial virus (BRSV) in cattle may be more realistic than the two-
stage model studied by Greenhalgh et al. [13]. It might then be
asked whether this increase in the complexity of the model pro-
vides scope for yet more complicated bifurcation diagrams and
hence more complicated system dynamics in the region of the
parameter space near R0 ¼ 1. Subsequent investigation of the
three-stage BRSV model revealed that this was in fact the case.

In this paper we study, in connection with the points made
above, the Core Group model (CG model) for the spread of a sexu-
ally transmitted disease as described by Hadeler and Castillo-Cha-
vez [17]. The CG model is able to exhibit backward bifurcation,
although we note here that there is a distinct structural difference
between the CG and BRSV models. While the latter models a dis-
ease that passes through several stages, the CG model incorporates
disease-driven changes in behaviour. After outlining the main fea-
tures of this model, we carry out an analytic study of the local
asymptotic stability of the endemic equilibria with the purpose
of seeing whether a general result emerges relating the stability
of endemic equilibria to their positions on the bifurcation curve.
The CG model is then extended in a natural way in order to explore
the possibility that more complicated bifurcation diagrams and
stability patterns might appear, as was found when the BRSV mod-
el was extended from two to three stages.

Stochastic aspects of the CG models are also studied here. In
particular, we explore the interaction between the deterministic
phenomenon of backward bifurcation and the probability of
extinction for the corresponding stochastic version of each model.
Our main purpose here is to compare the theoretical probabilities
of extinction for stochastic formulations of the model with the
corresponding probabilities obtained via an extensive series of sto-
chastic simulations. We would hope to be able to offer explana-
tions for any observed discrepancies. Our investigations were
carried out using analytical and numerical methods, and also by
way of computer simulations. We have indeed found interesting
links between the presence of backward bifurcation in the deter-
ministic models and the probability of extinction in the stochastic
versions. Furthermore, the expected time to extinction for the CG
model is considered in order to see whether, in certain circum-
stances, it is possible to observe significant discrepancies between
theoretical and simulated values, in contrast to the rather incon-
clusive results of Griffiths [15] for the two-stage BRSV model. Some
more unusual bifurcation diagrams are then obtained by using the
full epidemic model (i.e. the model for the population as a whole
rather than just that for the isolated sexually active core group).

When investigating backward bifurcation and associated phe-
nomena in the two and three-stage BRSV models, Greenhalgh
and Griffiths [14] obtained, both from the deterministic and the
stochastic point of view, a number of potentially interesting re-
sults. It cannot be assumed however, that such results, obtained
by studying one model in isolation, will automatically carry over
to other epidemic models. Although detailed analysis revealed a
number of phenomena that were noteworthy in their own right,
it may be that these were in fact particular to the model that
was being considered. Thus, in the light of the findings for the BRSV

models, we would like to see which of these phenomena do actu-
ally transfer to other epidemic models.

2. The basic Core Group model

Hadeler and Castillo-Chavez [17] consider the spread of a sexu-
ally transmitted disease. The population P is split into two classes;
a sexually active and relatively small core group C and a weakly
connected and sexually inactive remainder non-core group A. The
core group is further subdivided into susceptible S, educated (or
vaccinated) V and infected I individuals with C ¼ Sþ V þ I and
P ¼ Aþ C. Members of the core group are recruited from the
non-core group.

This scenario is modelled by way of a general set of differential
equations. In order to be able to draw some conclusions about the
behaviour of this rather complex model, the following system of
differential equations, modelling an isolated core population of
constant size C, is studied in detail:

dS
dt
¼ lC � b

SI
C
� wSþ að1� cÞI � lS; ð2:1Þ

dV
dt
¼ wS� ~b

VI
C
þ acI � lV ð2:2Þ

and
dI
dt
¼ bSI þ ~bVI

C
� aI � lI; ð2:3Þ

where l is the (per capita) common birth and death rate, b is the
transmission rate from infected to susceptible individuals, ~b is the
transmission rate from infected to educated (vaccinated) individu-
als (with 0 6 ~b 6 bÞ;a is the recovery rate, c is the proportion of
recovered individuals passing into the educated class and w is the
rate of direct transition from the susceptible class to the educated
class. Since the above system is homogeneous it can be normalised
by setting C ¼ 1, meaning that S, V and I then represent population
proportions rather than numbers of individuals.

The reproduction ratios for initial populations consisting en-
tirely of susceptible and educated individuals, respectively, are

R ¼ b
aþ l and ~R ¼

~b
aþ l

and the basic reproduction ratio is given by

R0ðwÞ ¼
l

lþ w
Rþ w

lþ w
~R ¼ lbþ w~b
ðaþ lÞðlþ wÞ ;

where R0 is written as a function of w in order to indicate that w is to
be utilised as the bifurcation parameter. We note here that R and ~R
given above are denoted R0 and ~R0, respectively, in the paper. We
make this change in order to avoid confusion over the commonly
accepted notation for the basic reproduction ratio that we have
adopted here. The authors make the point that education is not nec-
essary when R < 1, while if ~R > 1 then education is not effective, so
the interesting situation is ~R < 1 < R, and we shall assume that this
is the case. When ~R < 1 < R the unique education rate unique edu-
cation rate wfor which R0ðwÞ ¼ 1 is given by

w� ¼ R� 1
1� ~R

l > 0:

3. Locally asymptotically stable endemic equilibria and the
bifurcation curve

In their detailed analysis of the endemic equilibria of the two-
stage BRSV model, Greenhalgh et al. [13] found that when back-
ward bifurcation was present the upper subcritical endemic
equilibrium was always LAS while the lower one was always
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