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a b s t r a c t

Biochemical reaction networks are often described by deterministic models based on macroscopic rate
equations. However, for small numbers of molecules, intrinsic noise can play a significant role and sto-
chastic methods may thus be required. In this work, we analyze the differences and similarities between
a class of macroscopic deterministic models and corresponding mesoscopic stochastic models. We derive
expressions that provide a clear and intuitive view upon the behavior of the stochastic model. In partic-
ular, these expressions show the dependence of both the dynamics and the stationary distribution of the
stochastic model on the number of molecules in the system. As expected, most properties of the stochas-
tic model correspond well with those in the deterministic model if the number of molecules is large
enough. However, for some properties, both models are inconsistent, even if the number of molecules
in the stochastic model tends to infinity. Throughout this paper, we use a bistable autophosphorylation
cycle as a running example. For such a bistable system, we give an explicit proof that the rate of conver-
gence to the stationary distribution (or the second eigenvalue of the transition matrix) depends exponen-
tially on the number of molecules.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the past decades, new biochemical techniques have led to a
large increase in knowledge about biology at the molecular level.
Simultaneously, a growing awareness has emerged that reduction-
ism alone is insufficient for unraveling the complex interactions
within biochemical networks. This awareness has led to the rise
of the holistic field of systems biology, in which wet-lab experi-
ments are combined with (multiscale) computational modeling.
Traditionally, most of the systems investigated in this field are de-
scribed by deterministic models based on ordinary differential
equations (ODEs). In addition, there is a growing interest in sto-
chastic modeling techniques [1,2]. The advantage of those stochas-
tic techniques is that they explicitly take into account the intrinsic
noise that is present in real-life biochemical networks.

In this paper, we focus on the relations between stochastic and
deterministic models for a certain class of biochemical systems.
More specifically, we consider systems consisting of a number of
similar molecules that can each be in two ‘configurations’. Suppose
that the reversible interconversion between those configurations is
defined by a macroscopic deterministic model based on kinetic
rate laws. In principle, such a deterministic model describes the
behavior of a reaction system for very large numbers of molecules.

For a finite number of molecules, we can also introduce a meso-
scopic1 stochastic Markov model. The parameters for such a model
can be derived from the deterministic model. It is generally assumed
and for some elementary cases even proven that the expected
behavior of the stochastic model corresponds with the dynamics of
the deterministic model if the number of molecules in the described
volume is large enough [3]. For many smaller systems, a determinis-
tic model also yields a reasonable approximation, which can be ana-
lyzed more efficiently than the full stochastic system [4]. However,
there are also systems that display significantly different behavior
if the number of molecules is relatively small [5].

For some systems it is not trivial to explain how the expected
behavior of the stochastic model relates to that of the deterministic
model. This paper studies the relation between the stochastic and
deterministic models for a specific class of reaction systems. As a
running example, we study a bistable reaction system. More pre-
cisely, we use both a deterministic and a stochastic model to de-
scribe a highly idealized reaction module consisting of a
phosphorylation reaction, a de-phosphorylation reaction and a
trans-autophosphorylation reaction. This running example, further
referred to as ‘autophosphorylation cycle’, illustrates the paradox-
ical combination of bistability and stochasticity. After all, the long-
term behavior of a stochastic model of a chemical reaction system
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is in general independent of its initial state, which intuitively con-
flicts with the required bistability.

In Section 3, we derive a potential function that provides a
framework for the analysis of the stochastic model for both small
and larger numbers of molecules. This function is used to describe
the stationary distribution of the stochastic model and the ex-
pected transition times (see Section 4). The expected times of tran-
sitions between individual states are also related to the rate at
which the probability distribution converges to the stationary dis-
tribution. This convergence clearly depends on the eigenvalues of
the transition matrix of the stochastic model. We prove in Section 5
that under certain conditions, the transition matrix has an eigen-
value which converges to zero exponentially fast with an increas-
ing number of molecules. In each of Sections 2–5, we first
introduce the generic theory and subsequently exemplify this
using the autophosphorylation cycle introduced in Section 2. A dis-
cussion of both the generic theory and the autophosphorylation cy-
cle follows in Section 6. In this section, we also discuss the
resemblances and differences between our work and some classic
and more recent research papers in the field of statistical physics.

2. Two models

2.1. Model definitions

In this paper, we focus on systems in which each molecule can
be in two ‘configurations’. This type of system occurs in many dif-
ferent biological processes. For instance, many signaling proteins
can be modified by reversible post-translational modifications
such as phosphorylation or methylation [6]. Other examples in-
clude molecules that can switch between different conformations
or localizations within a cell.

The generic system consists of a total of N molecules, which can
be in either of the configurations X0 and X1, and the overall
reactions

X0 ¢ X1

To allow a comparison between systems with various values of N,
we define the proportion x of the molecules that is in the X1 config-
uration. This proportion can be derived from the number of mole-
cules (denoted with #) or from the concentrations (in square
brackets):

x ¼ #X1

#X0 þ#X1
¼ #X1

N
¼ ½X1�
½X0� þ ½X1�

:

As mentioned before, we will compare two representations of this
generic system.

The first representation of this system is the ‘deterministic
model’. In this representation, we use a system of ODEs to describe
the time evolution of x. The rate at which x changes due to the
reaction X1 ? X0 is given by a real, smooth, non-negative function
a(x); the rate of the opposite reaction is defined by a real, smooth,
non-negative function b(x). We further assume a(x) > 0 for all
0 6 x < 1, a(1) = 0, b(x) > 0 for all 0 < x 6 1 and b(0) = 0. The dynam-
ics of the deterministic model are given by

dx
dt
¼ aðxÞ � bðxÞ: ð1Þ

The second representation of the system described above is the ‘sto-
chastic model’. In this representation, we consider all possible
‘microstates’ (further ‘states’), each of which corresponds with an
integer number of molecules in configuration X1. Hence, a model
with N molecules has N + 1 possible states, which are numbered
according to the number of X1 molecules (see Fig. 1). We allow only
one reaction to occur at a time; hence, from each state only direct

neighbor states can be reached in one reaction step. Due to this
‘one-step-at-a-time property’ and the Markovian properties of the
model, the model is in fact a birth-and-death process [7] in which
the forward and backward propensities ak and bk, have the role of
birth and death rate, respectively.

One of the obvious differences between both models is that N is a
parameter of the stochastic model but not an explicit part of the
deterministic model. Consequently, the expected behavior of the
stochastic model changes with growing N, while the deterministic
model is independent of N. To allow a useful comparison, the sto-
chastic models with different values of N must all have the same to-
tal concentration as is used in the deterministic model. This means
that the volumes of the stochastic models scale linearly with N.

The propensities of state change ak and bk in the stochastic
model can be related to the deterministic production rates a(x)
and b(x) as follows:

ak ¼ Na
k
N

� �
; ð2Þ

bk ¼ Nb
k
N

� �
: ð3Þ

Using those expressions, we ensure that both models act on the
same time scale. The relations in (2) and (3) can be used for all uni-
molecular and pseudo-unimolecular reactions (i.e., reactions in
which the total number of molecules does not change). In this
way, assumptions about the deterministic model are transferred
to the stochastic model. As a result, elementary steps that are hid-
den in the deterministic model remain hidden in the stochastic
model. For the Michaelis–Menten reaction, this is discussed in [8].

Let z(t) be the probability distribution vector, which contains
the probabilities zk(t) that the system is in a state k 2 {0, . . .,N} at
a time t. The dynamics of the state probabilities in the stochastic
model are described by the Chemical Master Equation [9]:

dz
dt
¼M � z; ð4Þ

where the tridiagonal matrix M = (mij) (with i, j = 0,1, . . .,N), is given by

mij ¼

aj if j ¼ i� 1;
bj if j ¼ iþ 1;
�ai � bi if j ¼ i;

0 otherwise:

8>>><
>>>:

The stationary distribution for such a birth-and-death process fol-
lows directly from its (stochastic) detailed balance property [10]
and is given by:

Zk ¼
Qk�1

i¼0
ai

biþ1PN
j¼0

Qj�1
i¼0

ai
biþ1

� � : ð5Þ

2.2. Trans-autophosphorylation

Throughout this paper we exemplify our methods with the
bistable reaction system given by the following reactions:

Xþ S !k1 ;j XP þ S; ð6Þ

Xþ XP !
k2 ;j 2XP; ð7Þ

XP þ U !k3 ;j Xþ U: ð8Þ

0 1 2 N-1 N
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Fig. 1. The N + 1 states of the stochastic model.
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