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a b s t r a c t

Statistical consistency in phylogenetics has traditionally referred to the accuracy of estimating phyloge-
netic parameters for a fixed number of species as we increase the number of characters. However, it is
also useful to consider a dual type of statistical consistency where we increase the number of species,
rather than characters. This raises some basic questions: what can we learn about the evolutionary pro-
cess as we increase the number of species? In particular, does having more species allow us to infer the
ancestral state of characters accurately? This question is particularly important when sequence evolution
varies in a complex way from character to character, as methods applicable for i.i.d. models may no
longer be valid. In this paper, we assemble a collection of results to analyse various approaches for infer-
ring ancestral information with increasing accuracy as the number of taxa increases.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

As Elliott Sober discussed two decades ago [15], there is a funda-
mental asymmetry between reconstructing a past state from a pres-
ent observation, and predicting its future state. Moreover, this holds
even when the state evolves according to a time-reversible process
(processes which, when they are in equilibrium, behave the same
whether run forward or backward in time). For instance, consider
any continuous Markov process on two states, with arbitrary transi-
tion rates (generally unequal) between the two states. If we observe
the state of the process at the present time t, then the ‘best’ estimate
of the initial state at time 0 is always the present state, but the ‘best’
estimate of its state at some future time t0 > t depends on the actual
transition rates (which may be unknown) [15].

When we move beyond two states in a Markov process, the cur-
rent state is no longer guaranteed to always be the ‘best’ estimate
of the ancestral state, even for reversible processes, as we describe
below. Ancestral state estimation assumes a further dimension
when we move from the linear evolution of a state through time
to the bifurcating evolution of states in a tree that results in their
observed values at the leaves. The presence of many leaves helps
us to estimate the ancestral state more accurately, but these leaves
do not provide independent information about the root state due
to correlations arising from the partial overlap of the paths in the
tree as one moves from the root to the leaves. The mathematical,
statistical and computational aspects of ancestral state estimation

on a tree have been explored by a number of authors (e.g. [5,8,11–
14,23]) and the inference of ancestral states is an important ques-
tion in biology [9].

Our interest here is in site-specific models. These are especially
relevant with proteins, where each site has specific biochemical
constraints (e.g. small and hydrophobic, aromatic, helix-former,
etc.). As we are interested in site-specific models, the details of the
substitution model are mostly unknown. For example, the relative
or absolute branch length may not be known exactly, though we
may have some upper bound on them. Also, the equilibrium fre-
quencies at the site may not be known. This is the case in the CAT
model for proteins ([7]; see also [6]). This model is a mixture of
F81-like models, where each site follows a Poisson model with spe-
cific amino acid frequencies defined by the biochemical constraints
acting on that site. However, we shall see that dealing with un-
known equilibrium frequencies imposes strong limitations when
the aim is to estimate ancestral character states, especially when
the branch lengths are unknown. Thus, we will also envisage special
cases where equilibrium frequencies are known or even all identical.

In most cases (e.g. when the branch lengths are unknown), we
are thus unable to use standard likelihood calculations based on
the pruning algorithm to compute the most likely character state
at the tree root. Thus, we will discuss and study simple decision
rules to predict the state at the tree root. Parsimony is an example
of such a rule, where the branch lengths are not used. Another
example is the majority rule that involves selecting the state that
is most frequent at the tree leaves to estimate the root state. For
models in which the equilibrium frequencies are not uniform
across states, more complex inference rules are required. We shall
see that under suitable assumptions on the tree topology and
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branch lengths and/or on the model, these simple rules are statis-
tically consistent as we increase the number of taxa.

We treat four general cases, each depending on the properties of
the model. We start with the simplest model, the symmetric Poisson
model in which all transition rates between distinct rates are equal
(in the case of four states, this is the well-known Jukes–Cantor
model). We then consider two overlapping generalizations (‘mono-
tone’ and ‘conservative’) and finally we deal with the general mod-
el, for which stronger assumptions on the tree are required.

1.1. Preliminaries

Consider a rooted phylogenetic tree T (possibly non-binary)
with n leaves and a set S of possible states that each vertex can
be in. For a single-site assignment of states at the leaves of T, as-
sume that the assignment has evolved under a GTR (general
time-reversible) model from a particular character state s0 at the
root, with a normalized rate matrix Q = PS (where P = diag(p) con-
tains the equilibrium frequencies, and S is a symmetric matrix of
‘exchangeabilities’). The process acts on each edge e according to
some associated branch length le.

We assume that T and S (and perhaps p) are given, and, in addi-
tion, we may either know the le values or have some bounds on
them (e.g. the sum of the lengths from the root to any tip is, at
most, some given value l). We would like to use this input to esti-
mate the ancestral state s0 2 S at the root of the tree.

The ability to estimate s0 accurately depends on a tradeoff be-
tween what we know about the underlying parameters (e.g. the
site rate parameter l, the branch lengths le, and the properties of
Q such as the equilibrium distribution p) and how ‘well behaved’
the underlying Markov process is.

In particular, we seek a method M that is statistically consistent
in the following sense: suppose that the character states at the
leaves have evolved from an unknown state at some ancestral root
vertex under some Markov model. Then M is statistically consistent
as an estimator of the root state, from character state data at the
leaves of the tree, if the probability that M returns the correct
ancestral state is at least 1 � g(n,n) where g is some function which
tends to zero as max 1

n ; n
� �

tends to zero, n is the number of leaves
of the tree, and n is a parameter describing constraints on the
branch lengths of the tree.

A natural choice of such a method, when Q is completely spec-
ified (including the equilibrium distribution p) and the branch
lengths (le) are also known exactly, is to take the maximum poster-
ior probability (MPP) ancestral state (this selects the state with the
largest posterior probability; the MPP method can be shown to
confer the largest expected correct reconstruction probability
amongst all methods). For a symmetric model with flat priors the
MPP estimate of the root state is the same as the maximum likeli-
hood (ML) estimate, but in general the two approaches differ.

When the model is (partly) unknown, the ML and MPP ap-
proaches may not be possible (since they require both the tree
topology and estimates of the model parameters). But in these
cases, simpler approaches exist. For example, for a simple symmet-
ric model (e.g. Jukes–Cantor) and a star tree with unknown branch
lengths that are bounded above (le 6 l <1), we can estimate the
ancestral state accurately by selecting the majority state (the con-
sistency of this approach is justified by large deviation theorems
for sums of independent random variables).

However, even for symmetric models, it is clear that simply
allowing n to grow is not sufficient to allow for accurate inference
of the ancestral state s0; for example, we could have just two long
edges incident with the root, and lots of very short edges that join
the other endpoints of these edges to numerous taxa. In this case,
the substitution process behaves almost as on a two-taxon tree and
we have little information on the root when the two branches be-

come too long. Thus we seek relevant and reasonable constraints
on the distribution of le values for this accurate estimation to be
possible.

Moving away from symmetric models, selecting the majority
state at the leaves as an estimate of the ancestral state is not gen-
erally a sound strategy, even for a star tree, since the process after a
long period of time will favour the state with the highest equilib-
rium frequency, regardless of the state at the root.

Although we deal with the inference of a state at a single site,
the results are still relevant to the more general question of ances-
tral reconstruction of a sequence (of length k) from sequences of
length k observed at the leaves of the tree. Assuming independent
site evolution, the problem of ancestral state estimation remains
the same (i.e. each site is solved independently). If, on the other
hand, sites evolve with dependencies, but subject to some Markov
process, then the sequences of length k (small) may be treated as
single character states in a larger state space.

2. Case I: root state estimation without detailed knowledge of
branch lengths under a symmetric Poisson model

Under the symmetric r-state Poisson model, the maximum like-
lihood estimate of the root state, in the case where the branch
lengths (le) are unknown and are regarded as nuisance parameters
to be optimized, is the maximum parsimony (MP) estimate (Theo-
rem 6 of [22]). In this setting, we can reliably estimate the root
state, provided the taxon sampling is sufficiently dense that no
edges are too long. This was suggested by the simulations in [14]
and we establish two formal results now for the case when r = 2.

Proposition 2.1. Consider any rooted binary phylogenetic tree T.
Evolve a single site under the two-state symmetric Poisson model. Let
l+ be the maximum branch length over all edges. Provided that
lþ < 1

2 log 4
3

� �
, the probability P* that the maximum parsimony (MP)

reconstruction of the root state is the true state (toss a fair coin if the
two states are equally favored) satisfies:

P� P 1� 4lþ:

Proof. When l+ satisfies the bound described then, for each edge e
of T the probability that the endpoints of edge e are in different
states pðeÞ ¼ 1

2 ð1� e�2le Þ satisfies the inequality pðeÞ < 1
8. It then fol-

lows from part (ii) of Lemma 5.1 of [19], that:

P� P
1
2
þ Dg ;

where:

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4gÞð1� 8gÞ

p
2ð1� 2gÞ2

;

and where g = maxe{p(e)}. The result now follows from the
inequalities:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4gÞð1� 8gÞ

p
2ð1� 2gÞ2

P
1
2
ð1� 8gÞ; and g 6 lþ: �

Unfortunately, in a Yule tree of fixed height, the expected value
of l+ does not converge to zero as the speciation rate k tends to
infinity. This may seem surprising, since the expected length of a
randomly selected edge in the tree converges in length to 0 as k
grows; however, the expected number of edges increases with k,
and the probability that at least one of them is ‘long’ turns out to
be positive. Simulations suggest that the expected value of l+ con-
verges to a value close to 60% of the height of the tree; the follow-
ing result, the proof of which is provided in the Appendix,
establishes a smaller lower bound.
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