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a b s t r a c t

This paper presents new methods, using a Bayesian approach, for analyzing longitudinal count data with
excess zeros and nonlinear effects of continuously valued covariates. In longitudinal count data there are
many problems that can make the use of a zero-inflated Poisson (ZIP) model ineffective. These problems
are unobserved heterogeneity and nonlinear effects of continuously valued covariates. Our proposed
semiparametric model can simultaneously handle these problems in a unified framework. The framework
accounts for heterogeneity by incorporating random effects and has two components. The parametric
component of the model which deals with the linear effects of time invariant covariates and the non-para-
metric component which gives an arbitrary smooth function to model the effect of time or time-varying
covariates on the logarithm of mean count. The proposed methods are illustrated by analyzing longitudi-
nal count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Longitudinal count data with excess zeros relative to the Pois-
son process are common in many applications (e.g. [1–3], medical
[4] and pubic health [5,6]). The zero outcomes may be attributed to
either structural reasons (structural zeros) or sampling limitations
(sampling zeros). For example, in the case of counts of immature
whiteflies, zero counts may be recorded from plants which either
never are suitable as host plants for whitefly development and
reproduction (structural zeros) or for those which are suitable
but no reproduction was recorded during the experimental period,
thus resulting in zero-inflation. Ignoring the two types of zeros
leads to model misspecification, resulting in biased parameter esti-
mates and misleading conclusions. The most commonly used
method to account for excess zeros in count data is a zero-inflated
Poisson (ZIP) model [7].

Existing studies of zero-inflated models, usually ZIP, with ran-
dom effects to account for correlation in repeated outcomes are
generally based on restrictive assumptions such as the relationship
of the conditional mean of the outcome to covariates is often as-
sumed to be fully parametric. Specifically, the common approach
is to specify linear functions of observed covariates and unob-
served subject-specific effects via the log and logit link functions
for the counts and zero-inflation parts [3,7,8], respectively.
Although the parametric formulation enjoys simplicity, it suffers
from inflexibility in modeling complex nonlinear relationship be-

tween the mean outcome and covariates. We propose to relax
the linearity assumption for the regression components by using
unspecified non-parametric smooth functions. For this purpose,
we use penalized regression splines [9,10] for flexibly modeling
zero-inflated data.

A fully Bayesian method with Markov Chain Monte Carlo
(MCMC) algorithm [11,12] is used to simultaneously estimate the
fixed effects parameters and non-parametric models. The exten-
sion of the parametric to semiparametric setting based on penal-
ized regression splines enables us to estimate nonlinear effects of
continuous covariates using Bayesian approach.

A key feature of this article, therefore, is that we make inference
on all model components of the proposed model in a unified
framework. That is, we develop a Bayesian semiparametric ZIP
model that incorporates non-parametric function of nonlinear ef-
fects of continuously valued covariates, random effects, and excess
zeros. Detailed description of the proposed model is presented in
Section 2. Section 3 illustrates an application of the proposed
methods to assess the efficacy of pesticide in reducing the repro-
duction of whitefly over time. Section 4 ends the article with a
conclusion.

2. Bayesian semiparametric zero-inflated Poisson model

2.1. The basic model specification

For specifying the proposed models, let the discrete response var-
iable yijk be the count for the ith subject in the jth ðj ¼ 1;2; . . . JÞ block
during time period k ðk ¼ 1;2; . . . TijÞ. In our application (see Section
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3) on reproduction of whitefly after treatment application, we let nj

denote the number of plants in block j during week t so that
PJ

j¼1nj

gives the total number plants and
PJ

j¼1

Pnj

i¼1Tij denoting the total
number of observations. We assume that for each observed count,
yijk, there is a latent random variable Dijk with the observed binary
random variable Dijk ¼ IðDijk > 0Þ representing either the zero-state
or the Poisson-state from which each observation is drawn. The Dijk

are assumed independently drawn from a Bernoulli distribution
with parameter pijk, such that PrðDijk ¼ 1Þ ¼ pijk if yijk ¼ 0 comes from
the zero-state corresponding to never suitable for reproduction, and
PrðDijk ¼ 0Þ ¼ 1� pijk if yijk is generated from the Poisson-state. Gi-
ven the values of Dijk, covariate vectors and unobserved effects, yijk

is distributed as zero-inflated Poisson distribution, f ðyijkÞ, given by

yijk �
0; with probability pijk

PoissonðkijkÞ; with probability 1� pijk;

(
ð1Þ

where PoissonðkijkÞ is defined as expð�kijkÞk
yijk

ijk =yijk!.
The parameters k and p in (1), which correspond to the Poisson

and inflation components, can be modeled as functions of covari-
ates and unobserved effects via the log and logit links as follows:

logðkijkÞ ¼ x0ijkbþ gðtijkÞ þ ui; ð2Þ

and

logitðpijkÞ ¼ z0ijkcþ hðwijkÞ þ v i: ð3Þ

In the models (2) and (3), xijk and zijk are vectors of covariates
which are not necessarily the same for the zero-state and the Pois-
son-state, respectively, and h(�) and g(�) represent unknown
smooth nonlinear functions of observable continuous covariates
tijk and wijk. Here b and c are the associated vectors of unknown
coefficient parameters, and ðui;v iÞ are the subject level unobserved
effects which are assumed to be independent and normally distrib-
uted with mean 0 and variances r2

u and r2
v , respectively.

The likelihood function for the mixed zero-inflated model, con-
ditional on all covariates ðxyÞ and unobservables ðuyÞ, takes the
general form:

Lðy;Djxy;uy;WÞ ¼
Y
ijk

½PrðDijk ¼ 1Þ þ PrðDijk ¼ 0Þ

� Prðyijk ¼ 0Þ�Dijk ½PrðDijk ¼ 0Þðf ðyijkÞ�
1�Dijk ;

ð4Þ

where W is a vector of parameters, and the distribution of the count
variable yijk, conditional on covariates and unobserved effects, is as-
sumed to be Poisson.

2.2. Bayesian semiparametric ZIP mixed-effects models

In this sub-section, we present the modeling of the unknown
non-parametric functions h(�) and g(�) in (2) and (3). We use penal-
ized spline smooth functions to approximate the non-parametric
functions [13–15]. Penalized spline fitting as smoothing technique
has become very popular recently because of the link between
smoothing functions and linear mixed models which makes the
procedure so attractive. Based on a suggestion by Crainiceanu
et al. [9], this connection is made by using cubic spline basis for
representing gðtijÞ by a0 þ a1tij þ

PK
s¼1bsjtij � jsj3, where j1 <

j2 < � � � ;jK are fixed knots, and these knots are typically placed
at quantiles of the distribution of unique values of the covariate
tij. With respect to the dimension K we follow Ruppert et al. [16]
recommendation that the actual choice of K and the location of
knots have little influence on the resulting penalized fit as long
as K is large. The value of K is chosen between 5 and 35 to ensure
enough flexibility [16]. The random coefficient of the P-spline func-
tions b is assumed to be normally distributed with mean zero and

variance r2
b . The smooth function for h(�) is also defined in a similar

fashion with different parameters and knots. For estimation, we
use a Bayesian approach. A Bayesian penalized splines has the
advantage of allowing for simultaneous estimation of smooth func-
tions and smoothing parameters.

2.2.1. Prior distributions
Under Bayesian framework, we need to specify prior distribu-

tions for unknown parameters in the models (2) and (3) as follows.
For fixed effects b and c, we choose weakly informative normal

priors. That is, b � Nð0;RbÞ and c � Nð0;RcÞ, where Rb and Rc are
assessed to have large values to make the prior distributions
weakly informative but proper. We also assume inverse gamma
(IG) priors for the variances of the random effects v and u. That
is, r2

u � IGð:01; :01Þ and r2
v � IGð:01; :01Þ so that the gamma distri-

bution has mean 1 and variance 100. Likewise, both non-paramet-
ric functions of (2) and (3) have unknown parameters for fixed
effects components and random effects components. For the fixed
components, a0q and a1q jointly follow a multivariate normal dis-
tribution with means 0 and variance Raq for q ¼ 1 for g(�) and
q ¼ 2 for h(�). For the variances of the P-spline random coefficients,
r2

g � IGð:01; :01Þ and r2
h � IGð:01; :01Þ.

Given that the prior distributions for parameters have been as-
sessed, the next procedure is combine the likelihood function in (4)
with priors to make a Bayesian inference. This procedure is imple-
mented using MCMC algorithm.

2.2.2. Implementation of MCMC algorithm
The MCMC simulation sampling was implemented using Win-

BUGS software [17], and the program codes are available from
the author upon request. When the MCMC implementation is ap-
plied to the pesticide data (see Section 3), convergence of the
MCMC samples is assessed using standard tools within WinBUGS
software (trace plots, ACF plots, as well as Gelman–Rubin conver-
gence diagnostic). After an initial 10000 burn-in iterations,
10000 samples with thinning 20 are obtained to make inference.
After fitting these models, we also use a Bayesian model selection
technique to choose the best model that fits the data in Section 3.

2.3. Model selection

We use a Bayesian model selection procedure to choose a model
that fits the data well. One such a procedure is the deviance infor-
mation criterion (DIC), suggested by Spiegelhalter et al. [18], which
generalizes the Akaike information criterion (AIC) to a Bayesian ap-
proach. Like AIC, DIC trades off a measure of model adequacy
against a measure of complexity, and also is easy to calculate
and apply to a wide range of statistical models. It is based on the
posterior distribution of the log-likelihood in the Bayesian frame-
work. To compare between various models (e.g., models with para-
metric and non-parametric time effects) we use DIC. There are
many other Bayesian approaches to model selection (e.g., posterior
model probabilities, Bayes factor [19], posterior predictive checks
[20]). However, some of these methods are not well defined with
vague prior while the others are not automatic nor easily reduced
to a unique, single number summary [21]. In addition, although
hierarchical Bayesian methods implemented via MCMC procedures
enable the fitting of such models, a formal comparison of their fit is
hampered by their large size and often improper specifications. By
using a complexity measure for the effective number of parameters
that is based on an information theoretic argument, DIC avoids
such problems. We will use the recently developed DIC [18] for
model comparison in this paper. Guo and Carlin [21] gave several
advantages for choosing DIC as model selection criteria.

DIC is given as DIC ¼ goodness-of -fit þ penalty for complexity
where the ‘‘goodness-of-fit” is measured by the deviance for W,
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