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ABSTRACT

Graphical analysis methods are widely used in positron emission tomography quantification because of
their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in
the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a
two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is
an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated
by random noise and numerical quadrature error. Conditions are derived under which Logan’s graphical
method either over-or under-estimates the distribution volume in the noise-free case. The bias caused by
modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods
is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the
Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which
retains the elegant properties of graphical analysis methods is presented, along with a numerical algo-
rithm for its solution. We perform simulations with the fibrillar amyloid 8 radioligand [11C] benzothia-
zole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results
show that the proposed method significantly reduces the bias due to modeling error. Moreover, the
results for data acquired over a 70 min scan duration are at least as good as those obtained using existing
methods for data acquired over a 90 min scan duration.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Graphical analysis (GA) has been routinely used for quantifica-
tion of positron emission tomography (PET) radioligand measure-
ments. These techniques have been utilized with either input
data acquired from plasma measurements or using the time activ-
ity curve from a reference brain region. They have been used for
calculation of tracer uptake rates, absolute volumes of distribution
Vr (mLcm3) and distribution volume ratios (DVR), or, equiva-
lently, for binding potentials (BPyp, BPr and BPp, all with the same
units mL cm™3). They are widely used because of their inherent
simplicity and general applicability regardless of the specific com-
partmental model.

The well-known bias, particularly for reversible kinetics, in
parameters estimated by GA is commonly attributed to noise in
the data [1-3], and therefore techniques to reduce the bias have
concentrated on reducing the impact of the noise [4-7,2,8,9]. Here,
we turn our attention to another important source of the bias: the
modeling error which is implicit in GA approaches.
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The bias associated with GA approaches has, we believe, three
possible sources. The bias arising due to random noise is most of-
ten discussed, but errors may also be attributed to the use of
numerical quadrature and an approximation of the underlying
compartmental model. It is demonstrated in Section 2 that not only
is bias an intrinsic property of the linear model for limited scan
durations, which is exaggerated by noise, but also that it may be
dominated by the effects of the modeling error. Indeed, numerical
simulations, presented in Section 4, demonstrate that large bias
can result even in the noise-free case. Conditions for over-or un-
der-estimation of V; due to modeling error and the extent of bias
of the Logan plot are quantified analytically. These lead to the de-
sign of a bias correction method, Section 3, which still maintains
the elegant simplicity of GA approaches. This bias reduction is
achieved by the introduction of a simple non-linear term in the
model. While this approach adds some moderate computational
expense, simulations reported in Section 4.3 for the fibrillar amy-
loid g radioligand [11C] benzothiazole-aniline (Pittsburgh Com-
pound-B [PIB]) [10], illustrate that it greatly reduces bias.
Relevant observations are discussed in Section 5 and conclusions
presented in Section 6. The necessary mathematical analyses are
presented in the Appendices.
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2. Theory
2.1. Existing linear methods

For the measurement of Vr, existing linear quantification meth-
ods for reversible radiotracers with a known input function, i.e. the
unmetabolized tracer concentration in plasma, are based on the
following linear approximation of the true kinetics [11]:
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Here Ci(t) is the measured tissue time activity curve (TTAC), Cy(t) is
the input function, V1 represents the volume of distribution and quan-
tity b is a constant. This model, which we denote by MAO to distin-
guish it from MA1 and MA?2 introduced in [2], approximately
describes tracer behavior at equilibrium ie. t > teq. Dividing
through by Ci(t), showing that Vi is the linear slope and —b the
intercept, yields the original Logan graphical analysis model, de-
noted here by Logan-GA,
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Logan-GA : > teq. (2)
With known Ci(t) and Cy(t), Vr and intercept —b are obtained by
using linear least squares (LS) for the sampled version of (2).
Although it is well-known that this model often leads to under-esti-
mation of Vit is still widely used in PET studies. An alternative for-
mulation based on (1) is the MA1,
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for which Vr can again be obtained using LS [2]. The focus here is
thus examination of the modeling error specifically for Logan-GA
and MA1, from which a new method for reduction of modeling error
is designed.

2.2. Modeling error analysis

The general three-tissue compartmental model for the revers-
ible radioligand binding kinetics of a given brain region or a voxel
is illustrated in Fig. 1 [12,13]:

Here Cy(t) (kBq mL™") is the input function, i.e. the unmetabo-
lized radiotracer concentration in plasma, and Cgr(t), Cys(t) and
Cs(t) (kBq mL~1) are free radioactivity, non-specific bound and spe-
cific bound tracer concentrations, resp., and K; (mL mL™! min~')
and k; (min™!), i=2,...,6, are rate constants. Vg is related to the
rate constants as follows [14]:
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The numerical implementation for estimating the unknown rate
constants of the differential system illustrated in Fig. 1 is difficult
because three exponentials are involved in the solution of this sys-

tem [13,15]. Fortunately, for most tracers it can safely be assumed
that Cys and Cgr reach equilibrium rapidly for specific binding
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Fig. 1. Three-tissue compartmental model of reversible radioligand binding
dynamics.

regions. Then it is appropriate to use a two-tissue four-parameter
(2T-4k) model by binning Cys(t) and Cg(t) to one compartment
Cnp(t) = Cer(t) + Cns(t). This is equivalent to taking ks = kg = 0, and
hence Cys(t) =0. On the other hand, for regions without specific
binding activity, we know Cs(t) = 0 which is equivalent to taking
ks = k4 =0. For some tracers, however, for example the modeling
of PIB in the cerebellar reference region, the best data fitting is ob-
tained by using the 2T-4k model without binning Cys(t) and Cgr(t)
[16]. The advantage of using a 2T-4k model is that this model is a
priori structurally globally (uniquely) identifiable [15,14]. Assum-
ing the latter, Vr is given by Ki/ka(1 + k3/ks), and Kq/ko(1 + ks[kg),
for regions with and without specific binding activity, resp. Ignor-
ing the notational differences between the two models, for regions
with and without specific binding activity, they are both described
by the same abstract mathematical 2T-4k model equations. Here,
without loss of generality, we present the 2T-4k model equations
for specific binding regions,

dcglz(t) = KiGp(t) = (ka + ks)Coo (1) + kaCs (1) ?
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To obtain the equations appropriate for regions without specific
binding activity, Cs(t) is replaced by Cys(t) and k3 and k4 are inter-
preted as the association and dissociation parameters of regions
without specific binding activity. To simplify the explanation
Cs(t), k3 and k4 are used throughout for both regions with and with-
out specific binding activity, with the assumption that Cs(t), ks and
k4 should automatically be replaced by Cns(t), ks and kg respec-
tively, when relevant.

The solution of the linear differential system (5) and (6) is given
by
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where ® represents the convolution operation,
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The overall concentration of radioactivity is
Cr(t) = Cnp(t) + Cs(t)
= ((a1 + az)e" " + (b1 — ax)e™"2") ® Cp(t). (10)

Integrating (5) and (6) and rearranging, details are presented in
Appendix A, yields
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This is model (1) when Cs(t) is linearly proportional to C(t) for a
time window within the total scan duration of T minutes. The accu-
racy of linear methods based on (1) is thus dependent on the valid-
ity of the assumption that Cs(t), or equivalently Cup(t), is
approximately linearly proportional to C(t) over a time window
within [0, T]. Logan observed that Cyp(t) and Cs(t) are roughly pro-
portional to Ci(t), after some time point t* (<teq) [11]. If the
assumption of linear proportionality breaks down for the given
window, [t*,T], modeling error will be introduced in the estimated
V1, as shown later in Section 4.3. Indeed, in Section 5.1 we show
that, for the PIB radioligand on some regions with small k4, there
is no window within a 90 min scan duration where Cs(t) and
Cr(t) are linearly proportional. This is despite the apparent good
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