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a b s t r a c t

Graphical analysis methods are widely used in positron emission tomography quantification because of
their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in
the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a
two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is
an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated
by random noise and numerical quadrature error. Conditions are derived under which Logan’s graphical
method either over-or under-estimates the distribution volume in the noise-free case. The bias caused by
modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods
is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the
Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which
retains the elegant properties of graphical analysis methods is presented, along with a numerical algo-
rithm for its solution. We perform simulations with the fibrillar amyloid b radioligand [11C] benzothia-
zole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results
show that the proposed method significantly reduces the bias due to modeling error. Moreover, the
results for data acquired over a 70 min scan duration are at least as good as those obtained using existing
methods for data acquired over a 90 min scan duration.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Graphical analysis (GA) has been routinely used for quantifica-
tion of positron emission tomography (PET) radioligand measure-
ments. These techniques have been utilized with either input
data acquired from plasma measurements or using the time activ-
ity curve from a reference brain region. They have been used for
calculation of tracer uptake rates, absolute volumes of distribution
VT (mL cm�3) and distribution volume ratios (DVR), or, equiva-
lently, for binding potentials (BPND, BPF and BPP, all with the same
units mL cm�3). They are widely used because of their inherent
simplicity and general applicability regardless of the specific com-
partmental model.

The well-known bias, particularly for reversible kinetics, in
parameters estimated by GA is commonly attributed to noise in
the data [1–3], and therefore techniques to reduce the bias have
concentrated on reducing the impact of the noise [4–7,2,8,9]. Here,
we turn our attention to another important source of the bias: the
modeling error which is implicit in GA approaches.

The bias associated with GA approaches has, we believe, three
possible sources. The bias arising due to random noise is most of-
ten discussed, but errors may also be attributed to the use of
numerical quadrature and an approximation of the underlying
compartmental model. It is demonstrated in Section 2 that not only
is bias an intrinsic property of the linear model for limited scan
durations, which is exaggerated by noise, but also that it may be
dominated by the effects of the modeling error. Indeed, numerical
simulations, presented in Section 4, demonstrate that large bias
can result even in the noise-free case. Conditions for over-or un-
der-estimation of VT due to modeling error and the extent of bias
of the Logan plot are quantified analytically. These lead to the de-
sign of a bias correction method, Section 3, which still maintains
the elegant simplicity of GA approaches. This bias reduction is
achieved by the introduction of a simple non-linear term in the
model. While this approach adds some moderate computational
expense, simulations reported in Section 4.3 for the fibrillar amy-
loid b radioligand [11C] benzothiazole-aniline (Pittsburgh Com-
pound-B [PIB]) [10], illustrate that it greatly reduces bias.
Relevant observations are discussed in Section 5 and conclusions
presented in Section 6. The necessary mathematical analyses are
presented in the Appendices.
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2. Theory

2.1. Existing linear methods

For the measurement of VT, existing linear quantification meth-
ods for reversible radiotracers with a known input function, i.e. the
unmetabolized tracer concentration in plasma, are based on the
following linear approximation of the true kinetics [11]:

MA0 :

Z t

0
CTðsÞds � VT

Z t

0
CpðsÞds� bCTðtÞ; t P teq: ð1Þ

Here CT(t) is the measured tissue time activity curve (TTAC), Cp(t) is
the input function, VT represents the volume of distribution and quan-
tity b is a constant. This model, which we denote by MA0 to distin-
guish it from MA1 and MA2 introduced in [2], approximately
describes tracer behavior at equilibrium i.e. t P teq. Dividing
through by CT(t), showing that VT is the linear slope and �b the
intercept, yields the original Logan graphical analysis model, de-
noted here by Logan-GA,

Logan-GA :

R t
0 CTðsÞds

CTðtÞ
� VT

R t
0 CpðsÞds

CTðtÞ
� b; t P teq: ð2Þ

With known CT(t) and Cp(t), VT and intercept �b are obtained by
using linear least squares (LS) for the sampled version of (2).
Although it is well-known that this model often leads to under-esti-
mation of VT it is still widely used in PET studies. An alternative for-
mulation based on (1) is the MA1,

MA1 : CTðtÞ �
VT

b

Z t

0
CpðsÞds� 1

b

Z t

0
CTðsÞds; t P teq; ð3Þ

for which VT can again be obtained using LS [2]. The focus here is
thus examination of the modeling error specifically for Logan-GA
and MA1, from which a new method for reduction of modeling error
is designed.

2.2. Modeling error analysis

The general three-tissue compartmental model for the revers-
ible radioligand binding kinetics of a given brain region or a voxel
is illustrated in Fig. 1 [12,13]:

Here Cp(t) (kBq mL�1) is the input function, i.e. the unmetabo-
lized radiotracer concentration in plasma, and CFT(t), CNS(t) and
CS(t) (kBq mL�1) are free radioactivity, non-specific bound and spe-
cific bound tracer concentrations, resp., and K1 (mL mL�1 min�1)
and ki (min�1), i = 2, . . . ,6, are rate constants. VT is related to the
rate constants as follows [14]:

VT ¼
K1

k2
1þ k3

k4
þ k5

k6

� �
: ð4Þ

The numerical implementation for estimating the unknown rate
constants of the differential system illustrated in Fig. 1 is difficult
because three exponentials are involved in the solution of this sys-
tem [13,15]. Fortunately, for most tracers it can safely be assumed
that CNS and CFT reach equilibrium rapidly for specific binding

regions. Then it is appropriate to use a two-tissue four-parameter
(2T-4k) model by binning CNS(t) and CFT(t) to one compartment
CND(t) = CFT(t) + CNS(t). This is equivalent to taking k5 = k6 = 0, and
hence CNS(t) = 0. On the other hand, for regions without specific
binding activity, we know CS(t) = 0 which is equivalent to taking
k3 = k4 = 0. For some tracers, however, for example the modeling
of PIB in the cerebellar reference region, the best data fitting is ob-
tained by using the 2T-4k model without binning CNS(t) and CFT(t)
[16]. The advantage of using a 2T-4k model is that this model is a
priori structurally globally (uniquely) identifiable [15,14]. Assum-
ing the latter, VT is given by K1/k2(1 + k3/k4), and K1/k2(1 + k5/k6),
for regions with and without specific binding activity, resp. Ignor-
ing the notational differences between the two models, for regions
with and without specific binding activity, they are both described
by the same abstract mathematical 2T-4k model equations. Here,
without loss of generality, we present the 2T-4k model equations
for specific binding regions,

dCNDðtÞ
dt

¼ K1CpðtÞ � ðk2 þ k3ÞCNDðtÞ þ k4CSðtÞ ð5Þ

dCSðtÞ
dt

¼ k3CNDðtÞ � k4CSðtÞ: ð6Þ

To obtain the equations appropriate for regions without specific
binding activity, CS(t) is replaced by CNS(t) and k3 and k4 are inter-
preted as the association and dissociation parameters of regions
without specific binding activity. To simplify the explanation
CS(t), k3 and k4 are used throughout for both regions with and with-
out specific binding activity, with the assumption that CS(t), k3 and
k4 should automatically be replaced by CNS(t), k5 and k6 respec-
tively, when relevant.

The solution of the linear differential system (5) and (6) is given
by

CNDðtÞ ¼ ða1e�a1t þ b1e�a2tÞ � CpðtÞ ð7Þ
CSðtÞ ¼ a2ðe�a1t � e�a2tÞ � CpðtÞ ð8Þ

where � represents the convolution operation,

a1;2 ¼ ðk2 þ k3 þ k4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ k3 þ k4Þ2 � 4k2k4

q
Þ=2; and

a1 ¼
K1ðk4 � a1Þ

a2 � a1
; b1 ¼

K1ða2 � k4Þ
a2 � a1

; and a2 ¼
K1k3

a2 � a1
: ð9Þ

The overall concentration of radioactivity is

CTðtÞ ¼ CNDðtÞ þ CSðtÞ
¼ ðða1 þ a2Þe�a1t þ ðb1 � a2Þe�a2tÞ � CpðtÞ: ð10Þ

Integrating (5) and (6) and rearranging, details are presented in
Appendix A, yieldsZ t

0
CTðsÞds ¼ VT

Z t

0
CpðsÞds� k3 þ k4

k2k4
CNDðtÞ �

k2 þ k3 þ k4

k2k4
CSðtÞ; ð11Þ

¼ VT

Z t

0
CpðsÞds� k3 þ k4

k2k4
CTðtÞ �

1
k4

CSðtÞ: ð12Þ

This is model (1) when CS(t) is linearly proportional to CT(t) for a
time window within the total scan duration of T minutes. The accu-
racy of linear methods based on (1) is thus dependent on the valid-
ity of the assumption that CS(t), or equivalently CND(t), is
approximately linearly proportional to CT(t) over a time window
within [0,T]. Logan observed that CND(t) and CS(t) are roughly pro-
portional to CT(t), after some time point t* (<teq) [11]. If the
assumption of linear proportionality breaks down for the given
window, [t*,T], modeling error will be introduced in the estimated
VT, as shown later in Section 4.3. Indeed, in Section 5.1 we show
that, for the PIB radioligand on some regions with small k4, there
is no window within a 90 min scan duration where CS(t) and
CT(t) are linearly proportional. This is despite the apparent good

Fig. 1. Three-tissue compartmental model of reversible radioligand binding
dynamics.
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