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a b s t r a c t

Metabolic Engineering aims to improve the performance of biotechnological processes through rational
manipulation rather than random mutagenesis of the organisms involved. Such a strategy can only suc-
ceed when a mathematical model of the target process is available. Simplifying assumptions are often
needed to cope with the complexity of such models in an efficient way, and the choice of such assump-
tions often leads to models that fall within a certain structural template or formalism. The most popular
formalisms can be grouped in two categories: power-law and linear-logarithmic. As optimization and
analysis of a model strongly depends on its structure, most methods in Metabolic Engineering have been
defined within a given formalism and never used in any other.

In this work, the four most commonly used formalisms (two power-law and two linear-logarithmic)
are placed in a common framework defined within Biochemical Systems Theory. This framework defines
every model as matrix equations in terms of the same parameters, enabling the formulation of a common
steady state analysis and providing means for translating models and methods from one formalism to
another. Several Metabolic Engineering methods are analysed here and shown to be variants of a single
equation. Particularly, two problem solving philosophies are compared: the application of the design
equation and the solution of constrained optimization problems. Generalizing the design equation to
all the formalisms shows it to be interchangeable with the direct solution of the rate law in matrix form.
Furthermore, optimization approaches are concluded to be preferable since they speed the exploration of
the feasible space, implement a better specification of the problem and exclude unrealistic results.

Beyond consolidating existing knowledge and enabling comparison, the systematic approach adopted
here can fill the gaps between the different methods and combine their strengths.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Metabolic Engineering aims to improve the performance of bio-
technological systems through rational manipulation, as opposed
to random mutagenesis or trial and error methods. In order to
achieve such a goal for complex systems, a mathematical model
is needed. Simplifying assumptions are often needed to cope with
the complexity of such models in an efficient way, and the choice
of such assumptions often leads to models that fall within a certain
structural template or formalism. In addition to the advantages of
simplification, developing systematic formalisms results in struc-
turally homogeneous models for which standardized algorithms
can be developed. This has encouraged the search for fast approx-
imate methods that take advantage of structural regularities. These
methods usually provide results that are close to the accurate solu-

tions found by slower general purpose methods [27], and further-
more enable an interactive exploration of the problem. Several
methods have been proposed in which an equation can be used
to calculate the manipulations needed to obtain a certain steady
state [9,3,12]. To achieve the same goal, optimization approaches
have also been proposed [30,24,13,15].

The most popular formalisms can be grouped in two categories:
power-law [31] and linear-logarithmic [25]. In power-law models,
rates and variables are linearized in logarithmic axes, in other
words, they become linear in a log–log plot. The power-law formal-
ism includes several variants, of which Generalized Mass Action
(GMA) and S-systems are the most common. Linear-logarithmic
models are based on a mixed linearization in which the reaction
rates, and optionally some variables, stay in a Cartesian axis while
the rest of the variables are transformed into a logarithmic scale.
There are two variants of the linear-logarithmic formalism, namely
(log)linear and linlog. Although all these model types can be ob-
tained through a wide variety of methods [7,14,34,31], they are
all based in the same information and their ability to portray differ-
ent kinetic laws has been explained in terms of approximation the-
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ory by deriving their fundamental equations through Taylor series
[22]. In fact, even such a popular kinetic representation as the Hill
equation has been shown to be a particular case of a Taylor series
[22].

The first obstacle to overcome when comparing or combining
different formalisms is the existence of different notations.
Power-law models are normally presented within the notation
specific to Biochemical Systems Theory (BST) while linear-logarith-
mic follow that of Metabolic Control Analysis (MCA). These two
frameworks have parallel histories which have been converging
during the last 15 years and have been shown to be deeply related
[1]. MCA, originally intended to be used without a dynamic model
[10], is mainly based on matrix relations between local sensitivities
(elasticities) and global sensitivities (response and control coeffi-
cients) [16]. Furthermore, the classification of the variables within
its scope favors their separation according to biological properties
(enzymes, metabolites, effectors, etc.). BST, on the other hand, fa-
vors the explicit formulation of dynamic models and classifies vari-
ables according to their mathematical role, depending on whether
they are constant (independent variables) or time dependent
(dependent variables). An enzyme concentration can thus be an
independent variable, if it is considered to be constant during the
considered time scale, or a dependent variable, if its synthesis
and degradation are featured in the model. The MCA approach
yields equations with a more immediate biological interpretation,
but which have to be modified whenever the biological assump-
tions change (interactions among enzymes, moiety conservations,
etc.), this has led to many slightly different interpretations of the
basic formalism [28]. BST keeps a unified formulation that remains
consistent independently of the choices made by the modeler
[31,32]. Despite their differences, these two frameworks have led
to developments within the field of Metabolic Engineering that
are sometimes equivalent and sometimes complementary. Given
the potential benefit of combining such developments, and since
a unified notation for MCA and BST is not to be expected in a near
future, this work will use BST as a unifying framework. The reason
for such a choice is that the less intuitive variable grouping is lar-
gely compensated by the flexibility and generality gained in return.
Furthermore, BST goes beyond approximate rates as it can deal
with exact representations through detailed mechanistic model-
ling [20] or recasting arbitrary non-linear functions [19,6,20].

In the next section, the four considered formalisms will be pre-
sented in a consistent manner such that all the rate laws of every
formalism will depend on the same parameters. This will enable
us to present some basic results from BST and MCA in a form that
holds for all cases. Finally, a brief overview of the similarities and
differences between the power-law and linear-logarithmic formal-
isms will be presented. This will establish a single framework in
which different methods can be not only compared, but also
combined.

2. Theoretical framework

Mathematical models in Metabolic Engineering are often given
as systems of differential equations according to the form:

_xd ¼ N � v: ð1Þ

The reaction rates, transport fluxes, etc. collected in vector v do nor-
mally depend on many different factors, some involved in the
dynamics of the system (dependent variables, xd) while others re-
main constant (independent variables xi). The subindices d and i
will be used for dependent and independent variables in subse-
quent formulas.

It is important to note that there can be dependencies among
the rows in N when there are conservation relations. In such cases,
the derivatives of some dependent variables can be written as a
linear function of the rest [16] and eliminated from the system.
From now on, we will simplify the notation by assuming that the
stoichiometric matrix has been thus reduced. This will greatly sim-
plify the notation without any loss on generality.

The complexity of v ¼ fðxd; xiÞ can imply an important risk to
the mathematical tractability of the problem, for this reason, it is
often simplified to a non-mechanistic, approximated function with
a standard structure such that the resulting equations comply with
the specifications of a given formalism.

2.1. Derivation of the formalisms

In the following sections, the different rate laws will be consis-
tently derived making use of Taylor series. As a result, they will all
be defined around a chosen reference state (usually a steady state)
as a function of the variables of the system and two kinds of
parameters: kinetic orders and rate constants. Kinetic orders char-
acterize the response of rates to changes in the variables and are
defined as:

fi;j ¼
o ln v i

o ln xj
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0

; ð2Þ

where subindex 0 indicate the value of a magnitude in the steady
state. All the kinetic orders of a model can be grouped in a matrix F.

The rate constants can be grouped as a vector c, and will have a
different definition for every formalism but will always be deter-
mined by the rate values at the chosen reference state.

To achieve a compact notation, vectors are often collected in
diagonal matrices. These are composed of zeros save for their main
diagonal, which contains the elements of the corresponding vector.
Each of these matrices will be represented with the same letter as
the vector but capitalized, V ¼ diagðvÞ.

2.1.1. GMA
The GMA formalism is based in a log–log Taylor series:
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where super or subindex 0 indicate the value of a magnitude in the
steady state. The rate law is therefore linear in the log–log space:

w ¼ Fdyd þ Fiyi þ g; ð4Þ

where w ¼ ln v; y ¼ ln x and g ¼ ln c. Here, ln of a vector u denotes
the vector with components ln ui The rate becomes a power-law by
undoing the logarithmic transformation:

v i ¼ cix
f1
1 . . . xfn

n ; ð5Þ

where ci ¼
jv i j0

jx1 j
f1
0 ���jxn jfn0

. This expression can be simplified to ci ¼ jv ij0
when the variables are normalized by their steady state values. This
normalization does not alter any of the properties of the system
that will be discussed in this paper, but prevent some forms of
robustness analysis. Particularly, the information about robustness
to changes in the kinetic orders are lost for the reference state.

The rate law can be substituted in Eq. (1) to obtain a GMA
model.

2.1.2. S-systems
S-systems are a particular case of GMA in which there are only

two fluxes per equation:

_xd ¼ vþ � v�: ð6Þ

A. Marin-Sanguino et al. / Mathematical Biosciences 218 (2009) 50–58 51



Download English Version:

https://daneshyari.com/en/article/4500724

Download Persian Version:

https://daneshyari.com/article/4500724

Daneshyari.com

https://daneshyari.com/en/article/4500724
https://daneshyari.com/article/4500724
https://daneshyari.com

