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ing these regions.

We consider the problem of forecasting the regions at higher risk for newly introduced invasive species.
Favourable and unfavourable regions may indeed not be known a priori, especially for exotic species
whose hosts in native range and newly-colonised areas can be different. Assuming that the species is
modelled by a logistic-like reaction-diffusion equation, we prove that the spatial arrangement of the
favourable and unfavourable regions can theoretically be determined using only partial measurements
of the population density: (1) a local ‘spatio-temporal’ measurement, during a short time period and,
(2) a ‘spatial’ measurement in the whole region susceptible to colonisation. We then present a stochastic
algorithm which is proved analytically, and then on several numerical examples, to be effective in deriv-

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Because of trade globalisation, a substantial increase in biolog-
ical invasions has been observed over the last decades (e.g.
Liebhold et al. [1]). These invasive species are, by definition [2],
likely to cause economic or environmental harm or harm to human
health. Thus, it is a major concern to forecast, at the beginning of an
invasion, the areas which will be more or less infested by the
species.

Because of their exotic nature, invading species generally face
little competition or predation. They are therefore well adapted
to modelling via single-species models.

Reaction-diffusion models have proved themselves to give good
qualitative results regarding biological invasions (see the pioneer-
ing paper of Skellam [3], and the books [4,5] and [6] for review).

The most widely used single-species reaction-diffusion model,
in homogeneous environments, is probably the Fisher-Kolmogorov
[7,8] model:

U =DAu+u(u—yu), t>0xeQcR", (1.1)

where u = u(t, x) is the population density at time t and space posi-
tion x, D is the diffusion coefficient, pt corresponds to the constant
intrinsic growth rate, and % is the environment’s carrying capacity.
Thus y measures the susceptibility to crowding effects.
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On the other hand, the environment is generally far from being
homogeneous. The spreading speed of the invasion, as well as the
final equilibrium attained by the population are in fact often highly
dependent on these heterogeneities [4,9-11]. A natural extension
of (1.1) to heterogeneous environments has been introduced by
Shigesada, Kawasaki, Teramoto [12]:

e = V(D) V1) + u(p(x) — y(x)u),

In this case, the diffusivity matrix D(x), and the coefficients p(x) and
7(x) depend on the space variable x, and can therefore include some
effects of environmental heterogeneity.

In this paper, we consider the simpler case where D(x) is
assumed to be constant and isotropic and y is also assumed to be
positive and constant:

t>0,xcQcCRY. (1.2)

U = DAu+u(u(x) —yu), t>0,xeQcCR". (1.3)

The regions where p is high correspond to favourable regions (high
intrinsic growth rate and high environment carrying capacity),
whereas the regions with low values of u are less favourable, or
even unfavourable when u < 0. In what follows, in order to obtain
clearer biological interpretations of our results, we say that y is a
‘habitat configuration’.

With this type of model, many qualitative results have been
established, especially regarding the influence of spatial heteroge-
neities of the environment on population persistence, and on the
value of the equilibrium population density [4,9,13-15]. However,
for a newly introduced species, like an invasive species at the
beginning of its introduction, the regions where p is high or low
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may not be known a priori, particularly when the environment is
very different from that of the species native range.

In this paper, we propose a method of deriving the habitat con-
figuration p, basing ourselves only on partial measurements of the
population density at the beginning of the invasion process. In Sec-
tion 2, we begin by giving a precise mathematical formulation of
our estimation problem. We then describe our main mathematical
results, and we link them with ecological interpretations. These
theoretical results form the basis of an algorithm that we propose,
in Section 3, for recovering the habitat configuration p. In Section
4, we provide numerical examples illustrating our results. These
results are further discussed in Section 5.

2. Formulation of the problem and main results
2.1. Model and hypotheses
We assume that the population density u, is governed by the
following parabolic equation:
Oclly = DAU, + 1, (U(X) — i),

u,(t,x) =0, t>0,xecdQ,
u,(0,x) = u;(x) in Q,

t>0,x€eQ,
(Pyy)

where Q is a bounded subdomain of R? with boundary 8Q. We will
denote Q := (0, +c0) x 2 and X := (0, +o0) x 0Q.

The growth rate function u is a priori assumed to be bounded,
and to take a known constant value outside a fixed compact subset
Q of Q:

ue s ={pel(Q),-M<p<Mae,and p=min Q\ Q},

for some constants m,M, with M > 0; the notation ‘a.e.’ means
‘almost everywhere’, which is equivalent to ‘except on a set of zero
measure’.

The initial population density u;(x) is assumed to be bounded
(in C*(Q)), and bounded from below by a fixed positive constant
in a fixed closed ball %, c ©,, of small radius e:

9 = {d) > Ovd) S C2(§)7 H¢||C2(!2) g u_i7 d) > & in ‘j]}m }7 (24)
for some positive constants u; and u;.
Absorbing (Dirichlet) boundary conditions are assumed.

Remark 2.1. Absorbing boundary conditions mean that the indi-
viduals crossing the boundary immediately die. Such conditions
can be ecologically relevant in numerous situations. For instance
for many plant species, seacoasts are lethal and thus constitute this
kind of boundaries.

For technical reasons we have to introduce the subset Qy, such
that, in the interface between Q; and @, i takes a known value m.
This value is typically negative, indicating that, near the lethal
boundary, the environment is unfavourable. This assumption is not
very restrictive since, in fact, Q; can be chosen as close as we want
to Q.

For precise definitions of the functional spaces L2, L* and C? as
well as the other mathematical notations used throughout this
paper, the reader can refer, e.g., to [16].

2.2. Main question

The main question that we presented at the end of Section 1 can
now be stated: for any time-span (to, t;), and any non-empty sub-
set w of Q, is it possible to estimate the function p(x) in Q, basing
ourselves only on measurements of u,(t, x) over (o, t;) x w, and on

a single measurement of u,(t,x) in the whole domain @ at a time
T/ _ fottin
= hihg

2.3. Estimating the habitat configuration

Let jtbe a functionin.#, and let v be the solution of the linear par-
abolic problem (P;o). We define a functional G, over R, x ., by

Gu(, 1) = (191t = BV 2 1 1y ) + 1AU(T', ) = AV(T Iz
1y (') = V(T )

where u, is the solution of (P,,). This functional G, quantifies the
gap between u, and v on the set where u, has been measured.

Theorem 2.2. The functions u, [t € .4 being given, we have:

- C -
- MH%Z(QI) < u—_izcu(Q.u)v

for all pie.# and for some positive constant C = C(Q,Qy,
, #:,D, to, tv, Ui /1;).

The proof of this result is given in Appendix A.1. It bears on a
Carleman-type estimate.

Biological interpretation: This stability result means that, in the
linear case corresponding to Malthusian populations (y = 0), two
different habitat configurations p, it cannot lead to close popula-
tion densities up,v. Indeed, having population densities that are
close to each other in the two situations, even on a very small
region , during a small time period (to, t1), and in the whole space
Q at a single time T/, would lead to small G, values, and therefore,
from Theorem 2.2, to close values of the growth rate coefficients u
and .

Theorem 2.2 implies the following uniqueness result:

Corollary 2.3. If v is a solution of both (P,0) and (Pyo), then u = 1
a.e. in Qq, and therefore in Q.

Biological interpretation: In the linear case (y = 0), if two habitat
configurations y, jt lead to identical population densities uo, v, even
on a very small region w, during a small time period (to, t;), and in
the whole space Q at a single time T/, then these habitat configura-
tions are identical.

Next we have the following result:

Theorem 2.4. We have' |G,(0, it) — Gu(y, ft)| = O(u%), as u; — 0.

The proof of this result is given in Appendix A.2.

Biological interpretation: Assume that the habitat configuration
[ is not known, but that we have measurements of the population
density u,, governed by the full non-linear model (1.3). Consider a
configuration [t in .# such that the population density v obtained
as a solution of the linear model (P ) has values close to those ta-
ken by the population density u,, in the sense that G,(y, ft) is close
to 0. If the initial population density is far from the environment
carrying capacity, then u; < % u; is small and, from Theorem 2.4,
G(0, 1) is also close to 0. Thus Theorem 2.2 implies that the hab-
itat configuration f is an accurate estimate of u. In Section 3, we
propose an algorithm to obtain explicitly such estimates of .

Remark 2.5. In fact, the term ¢(Ti;%) increases exponentially with
time t;. Thus, obtaining accurate estimates of u require, in practice,
to work with small times i.e. at the beginning of the invasion.

2.4. Forecasting the fate of the invading population

The knowledge of an L*-estimate ji of y enables us to give an
estimate of the asymptotic behaviour of the solution u, of (P,;),
as t — +oo, and especially to know whether the population will

! Two functions f(u, fi,u;, u;, W, y) and g(u, ft, u;, u;, Tz, y), are written f = 0(g) as
g — 0 if there exists a constant K > 0, independent of y, i, u;, u;, ti; and 7, such that
|fI<K|g]| for g small enough.
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