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a b s t r a c t

The testing procedure of Yakubovich’s oscillatority property is presented. The procedure is applied for
two models of circadian oscillations [J.C. Leloup, A. Goldbeter, A model for circadian rhythms in Dro-
sophila incorporating the formation of a complex between the PER and TIM proteins, J. Biol. Rhythms,
13 (1998) 70–87; J.C. Leloup, D. Gonze, A. Goldbeter, Limit cycle models for circadian rhythms based
on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms, 14 (1999) 433–448]. Ana-
lytical conditions of these models oscillatority are established and bounds on oscillation amplitude are
calculated.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

During recent years an interest in studying more complex
behavior of the systems related to oscillatory and chaotic modes
has grown significantly. It was founded that important and use-
ful concept for studying irregular oscillations in dynamical sys-
tems is ‘‘oscillatority” introduced by V.A.Yakubovich in 1973
[14]. Frequency domain conditions for oscillatority were ob-
tained for Lurie systems, composed on linear and nonlinear parts
[12,14,15]. Oscillation analysis and design methods for generic
nonlinear systems were proposed in [5]. The result of [5] was
developed in [6] for nonlinear time delay systems. In [6] the pro-
posed results were applied to several biological systems, which
models can be described by nonlinear dynamical equations with
delays. Among them the model of circadian rhythms in Drosoph-
ila from works [8,9] was analyzed. The considered model from
[8] has dimension of five. In work [10] more detailed model of
circadian oscillations was proposed (with dimension 10), that
incorporates the formation of a complex between the PER and
TIM proteins. In paper [11] it was noted that circadian oscilla-
tions in Drosophila and Neurospora are closely related by the nat-
ure of the feedback loop that governs circadian rhythmicity, even
if they differ by the identity of the molecules involved in the
regulatory circuit. The simple model of circadian oscillation in
Neurospora was presented in [11] (with dimension 3).

In this paper the theory developed in [5,6] is applied to the
models of circadian oscillations in Drosophila and Neurospora from
papers [10] and [11] to derive conditions of oscillations arising in
the systems. This topic of research dealing with conditions of oscil-
latority of various circadian rhythms models is very popular in the
last years [16–19] (just to mention the latest papers). Mainly the
researches in this field are oriented on developing conditions of
periodical oscillations existence that results to rather complex
and local analysis of the models. The concept of Yakubovich’s oscil-
latority covers any types of irregular oscillations as well as period-
ical ones (without distinguishing the type of periodicity of
oscillating modes). Such relaxation allows one to simplify the test-
ing conditions, additionally, the conditions provide the restrictions
on all admissible values of parameters ensuring oscillatority for the
model (in contrast with bifurcation approach [16], where existence
of oscillations are guaranteed only locally in the vicinity of bifurca-
tion point, while values of parameters of real biological processes
can be far beyond the bifurcation).

In the following section some definitions and notations from [5]
are introduced and the procedure for oscillatority property estab-
lishing is formulated. In section 3 the model of circadian oscilla-
tions in Drosophila from [11] is considered. In section 4 the
complex model of circadian rhythms in Drosophila from [10] is
analyzed.

2. Preliminaries

Let us consider the following model of nonlinear dynamical
system:

_x ¼ fðxÞ; ð1Þ
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where x 2 Rn is the state space vector; f is locally Lipschitz contin-
uous function on Rn, f(0) = 0. Solution x(x0, t) of the system (1) with
initial condition x0 2 Rn is defined at the least locally for t 6 T (fur-
ther we will simply write x(t) if initial conditions are clear from the
context). If T = +1 for all initial conditions, then such system is
called forward complete.

As usual, function q:R+ ? R+ belongs to class K, if it is strictly
increasing and q(0) = 0;q 2 K1 if q 2 K and q(s) ?1 for
s ?1;R+ = {s 2 R:s P 0}. Notation DV(x)F(�) stands for directional
derivative of function V with respect to vector field F if function
V is differentiable and for Dini derivative in the direction of F

DVðxÞFð�Þ ¼ lim
t!0þ

inf
Vðxþ tFð�ÞÞ � VðxÞ

t

if function V is Lipschitz continuous.

Definition 1 [5] . Solution x(x0, t) with x0 2 Rn of system (1) is
called [p�,p+]-oscillation with respect to output w = g(x) (where
g:Rn ? R is a continuous monotonous with respect to all argu-
ments function) if the solution is defined for all t P 0 and

lim
t!þ1

wðtÞ ¼ p�; lim
t!þ1

wðtÞ ¼ pþ;�1 < p� < pþ < þ1:

Solution x(x0, t) with x0 2 Rn of system (1) is called oscillat-
ing, if there exist some output w and constants p�, p+ such,
that x(x0, t) is [p�,p+]-oscillation with respect to the output
w. Forward complete system (1) is called oscillatory, if for
almost all x0 2 Rn solutions of the system x(x0, t) are oscillating.
Oscillatory system (1) is called uniformly oscillatory, if for
almost all x0 2 Rn for corresponding solutions x(x0, t) there exist
output w and constants p�, p+ non-depending on initial
conditions.

Note that term ‘‘almost all solutions” is used to emphasize that
generally system (1) has a nonempty set of equilibrium points,
thus, there exists a set of initial conditions with zero measure such,
that corresponding solutions are not oscillations. It is worth to
stress, that constants p� and p+ are exact asymptotic bounds for
output w. Conditions of oscillation existence in the system are
summarized in the following theorem.

Theorem 1 [5]. Let system (1) have two continuous and locally
Lipschitz Lyapunov functions V1 and V2 satisfying for all x 2 Rn and
t 2 R+ inequalities:

t1ðjxjÞ 6 V1ðx; tÞ 6 t2ðjxjÞ; t3ðjxjÞ 6 V2ðx; tÞ 6 t4ðjxjÞ;

for t1,t2,t3,t4 2 K1 and

oV1=ot þ DV1ðx; tÞfðxÞ > 0 for 0 < jxj < X1 and x R N;

oV2=ot þ DV2ðx; tÞfðxÞ < 0 for jxj > X2 and x R N;

X1 < t�1
1 � t2 � t�1

3 � t4ðX2Þ;

where N � Rn is a set with zero Lebesgue measure, and X \ N is empty
set, X ¼ fx : t�1

2 � t1ðX1Þ < jxj < t�1
3 � t4ðX2Þg. Then the system is

oscillatory.

Note, that the set X determines lower bound for value of p� and
upper bound for value of p+.

Like in [15] one can consider Lyapunov function for linearized
near the origin system (1) as a function V1 to prove local instability
of the system solutions. Instead of existence of Lyapunov function
V2 one can require just boundedness of the system solution x(t)
with known upper bound. It can be obtained using another
approach not dealing with time derivative of Lyapunov function
analysis. In this case Theorem 1 transforms into Theorem 3.4 from
[7].

Conditions of above theorem are rather general and define
the class of systems, which oscillatory behavior can be investi-
gated by the approach. Namely systems, which have in state
space attracting compact set containing oscillatory movements
of the systems. For such systems Theorem 1 gives the useful tool
for testing oscillating behavior and obtaining estimates for the
amplitude of oscillations. It is possible to show that for a sub-
class of uniformly oscillating systems proposed conditions are
also necessary.

Theorem 2 [4]. Let system (1) be uniformly oscillatory with respect
to the output w = g(x) (where g:Rn ? R is a continuous monotonous
with respect to all arguments function), and for all x 2 Rn the following
relations are satisfied:

v1ðjxjÞ 6 gðxÞ 6 v2ðjxjÞ;v1;v2 2 K1;

the set of initial conditions for which system is not oscillating consists in
just one point N = {x:x = 0}. Then there exist two continuous and lo-
cally Lipschitz Lyapunov functions V1:Rn+1 ? R+ and V2:Rn+1 ? R+ such,
that for all x 2 Rn and t 2 R+ inequalities hold:

t1ðjxjÞ 6 V1ðx; tÞ 6 t2ðjxjÞ;

t3ðjxjÞ 6 V2ðx; tÞ 6 t4ðjxjÞ; t1; t2; t3; t4 2 K1;

oV1=ot þ DV1ðx; tÞfðxÞ > 0 for 0 < jxj < v�1
2 ðp�Þ;

oV2=ot þ DV2ðx; tÞfðxÞ < 0 for jxj > v�1
1 ðpþÞ:

For the uniformly oscillatory systems with single equilibrium
point at the origin Theorems 1 and 2 give necessary and sufficient
conditions of oscillations existence. According to the results of
works [8–11] the circadian rhythms in Drosophila and Neurospora
are the nice examples of uniformly oscillating systems. In this case
application of proposed in Theorems 1 and 2 theory to the circa-
dian oscillation models is natural for deriving conditions of oscilla-
tions existence. That is more expressions for time derivatives of
Lyapunov functions V1 and V2 can provide analytical parametric
conditions for oscillations existence.

Finally, let us describe the testing procedure of oscillatority
property presence in dynamical nonlinear systems:

(1) calculation of equilibrium points coordinates;
(2) determining boundedness of the system trajectories property

(using function V2 or applying another approach);
(3) confirmation of local instability property in an equilibrium

(applying function V1 or using the first approximation of
the system dynamics in the equilibrium);

(4) the form of set X calculation and verification of the equilib-
rium points absence in that set.

If all four steps are successfully passed, then the system is oscil-
latory in the sense of Yakubovich (Definition 1). Let us apply the
above procedure to circadian oscillations models in Drosophila
and Neurospora.

3. Circadian oscillations in Neurospora

Following [11] let us consider the following model of the
oscillations:

_M ¼ v s
Kn

I

Kn
I þ Fn

N

� vm
M

Km þM
; ð2Þ

_Fc ¼ ksM � vd
Fc

Kd þ Fc
� k1Fc þ k2FN; ð3Þ

_FN ¼ k1Fc � k2FN; ð4Þ
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