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Abstract

An integro-differential equation is proposed to model a general relapse phenomenon in infectious diseas-
es including herpes. The basic reproduction number R0 for the model is identified and the threshold prop-
erty of R0 established. For the case of a constant relapse period (giving a delay differential equation), this is
achieved by conducting a linear stability analysis of the model, and employing the Lyapunov–Razumikhin
technique and monotone dynamical systems theory for global results. Numerical simulations, with param-
eters relevant for herpes, are presented to complement the theoretical results, and no evidence of sustained
oscillatory solutions is found.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Herpes simplex virus type 2 (herpes) is a human disease that is transmitted by close physical or
sexual contact, and the incidence of this disease has risen over the last three decades [10]. Important
features of herpes are that an individual once infected remains infected for life, and the virus
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reactivates regularly with reactivation producing a relapse period of infectiousness (see, e.g., Blow-
er et al. [5] and the references therein, and Hart [10]).

An ordinary differential equation (ODE) compartmental model for herpes was formulated by
Tudor [18], who also noted that such a model is appropriate for pseudorabies in swine (see also
Smith and Grenfell [15]). In this model the constant population is divided into three compartments
depending on disease status. Individuals not previously exposed to the virus are susceptible, individ-
uals infected and shedding virus are infective (infectious), and individuals previously infected with
the virus but not currently shedding virus are recovered (latent). At time t, the numbers in each of
these compartments are denoted by S(t), I(t), and R(t), respectively, giving an SIRI model. Assum-
ing standard incidence, a basic reproduction number R0 is identified, and it is shown to be a sharp
threshold determining whether or not the disease dies out or approaches an endemic value.

This ODE model was extended to include more general incidence functions by Moreira and
Wang [13] and a similar threshold result identified. Blower [4] summarized four different compart-
mental models for herpes. One model [5] contains an ODE model with six compartments to pre-
dict how much drug resistance would emerge if antiviral treatment rates of herpes were increased.

Our aim is to formulate a more general three compartmental model for a disease with relapse,
and in particular to investigate the consequences of different assumptions about the relapse peri-
od. For the ODE models cited above, the infectious and relapse periods are assumed to have dis-
tributions that are negative exponentials. We allow for a more general relapse distribution, and in
particular consider a case in which the relapse time is a constant. Mathematically this arises from
taking a step function distribution for the relapse period, and leads to a delay differential equa-
tion. Such equations can have a Hopf bifurcation leading to sustained oscillatory solutions, but
we find no evidence of this in our model.

In Section 2, we formulate our general SIRI model that can be applied to a disease with relapse.
This is given in terms of P(t), the fraction of recovered individuals remaining in the recovered class
t units after recovery. Some basic results, including calculation of R0, are given in Section 3. For
P(t) a negative exponential, the ODE model dynamics are briefly summarized in Section 4. In Sec-
tion 5, P(t) is assumed to have compact support. The disease-free equilibrium is shown to be glob-
ally asymptotically stable if R0 < 1, and a Lyapunov–Razumikhin type theorem is used to
determine a condition under which the endemic equilibrium is globally asymptotically stable if
R0 > 1. For P(t) a step function (Section 6), the endemic equilibrium is proved to be locally
asymptotically stable if R0 > 1, and global asymptotically stable if, in addition, the relapse time
is short. Finally in Section 6, numerical simulations using parameters appropriate for herpes [5]
are presented that complement the theoretical results and indicate that R0 is a sharp threshold
also for the step function case.

2. Model formulation

Let S(t), I(t) and R(t) be the numbers of individuals in the susceptible, infective and the recov-
ered classes, respectively, with the total population N(t) = S(t) + I(t) + R(t). Assuming standard
incidence for the disease transmission, the rate of change of S(t) with time is

S 0ðtÞ ¼ bNðtÞ � k
SðtÞIðtÞ

NðtÞ � dSðtÞ; ð2:1Þ
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