
CODE TCP: A competitive delay-based TCP

Yi-Cheng Chan a,*, Chia-Liang Lin a, Chia-Tai Chan b, Cheng-Yuan Ho c

a Department of Computer Science and Information Engineering, National Changhua University of Education, No. 2, Shi-Da Road, Changhua City 500, Taiwan
b Institute of Biomedical Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei City 112, Taiwan
c Department of Computer Science, National Chiao Tung University, No. 1001 Ta Hsueh Road, Hsinchu City 300, Taiwan

a r t i c l e i n f o

Article history:
Received 19 September 2008
Received in revised form 9 January 2010
Accepted 11 January 2010
Available online 18 January 2010

Keywords:
Congestion control
TCP Reno
TCP Vegas
Fairness
Transport layer protocol

a b s t r a c t

TCP Vegas is a well-known delay-based congestion control mechanism. Studies have indicated that TCP
Vegas outperforms TCP Reno in many aspects. However, Reno currently remains the most widely
deployed TCP variant in the Internet. This is mainly because of the incompatibility of Vegas with Reno.
The performance of Vegas is generally mediocre in environments where it coexists with Reno. Hence,
there exists no incentive for operating systems to adopt Vegas as the default transport layer protocol.
In this study, we propose a new variant of Vegas called COmpetitive DElay-based TCP (CODE TCP). This
variant is compatible with Reno and it can obtain a fair share of network resources. CODE is a sender-
sided modification and hence it can be implemented solely at the end host. Simulations and experiments
confirm that CODE has better fairness characteristics in network environments in which it coexists with
Reno while retaining the good features of Vegas.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Transmission Control Protocol (TCP) is a connection-oriented,
end-to-end, and reliable protocol. Nowadays, a majority of Internet
traffic is carried by TCP. Therefore, the behavior of TCP is tightly cou-
pled with the overall Internet performance. To improve network effi-
ciency, many TCP variants have been proposed. Two of these variants
are noteworthy. One is Reno [1], which has been widely deployed in
the Internet; the other is Vegas [2], which claims to have a through-
put that is 37–71% greater than that of Reno.

TCP Vegas is a delay-based congestion control mechanism. Un-
like TCP Reno which uses a binary congestion signal, packet loss, to
adjust its window size, Vegas adopts a more fine-grained signal,
queuing delay, to avoid congestion. Vegas can detect network con-
gestion in the early stage and successfully prevent periodic packet
loss that usually occurs in Reno. Delay-based congestion control
schemes have attracted considerable attention because of their
innovative control policy [3–10].

As compared to Reno, Vegas generally performs better with re-
spect to overall network utilization [2], stability [11,12], fairness
[11,12], throughput, packet loss [2], and burstiness [13] in homoge-
neous environments. Vegas also outperforms TCP Newreno [14].
However, studies have shown that when Reno and Vegas connec-
tions coexist in the same network, Reno obtains a greater amount

of bandwidth as compared to Vegas [12,15,16]. Consequently,
although Vegas has been available for a few years, it has not been
adopted widely because of its perceived incompatibility with Reno.

To deal with the fairness problem, we propose a new mecha-
nism called COmpetitive DElay-based TCP (CODE TCP), which is a
variant of Vegas. Most of the operations in CODE TCP are similar
to those in Vegas except that the two thresholds a and b are adap-
tive to the state of the network. When CODE senses the occurrence
of network congestion and it does not consider itself to be respon-
sible for the congestion, it begins to increase a and b instead of
reducing its own rate. This makes CODE behave more similarly to
Reno. Therefore, if the competing source is Reno, CODE reacts
against its aggressiveness and its performance does not decrease.
Conversely, if the competing source is Vegas, after a transition per-
iod, CODE recovers to a stable status as a Vegas source by reducing
a and b. Changing the values of a and b instead of directly altering
the value of its congestion window ðCWNDÞ should allow CODE to
preserve the properties of Vegas in reaching an operating point.

The remainder of this paper is organized as follows. We de-
scribe the related work in Section 2. Section 3 presents a detailed
description of the proposed mechanism, CODE TCP. Section 4 pre-
sents and discusses the results of both NS-2 simulations and exper-
iments on a Linux platform. Finally, the conclusions are presented
in Section 5.

2. Related work

To ensure network efficiency, TCP controls its sending rate
based on feedback from the network. In order to control the

0140-3664/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.01.007

* Corresponding author. Tel.: +886 4 7232105x7044; fax: +886 4 7211284.
E-mail addresses: ycchan@cc.ncue.edu.tw (Y.-C. Chan), 94612005@mail.ncue.

edu.tw (C.-L. Lin), ctchan@bme.ym.edu.tw (C.-T. Chan), cyho@csie.nctu.edu.tw (C.-Y.
Ho).

Computer Communications 33 (2010) 1013–1029

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom

http://dx.doi.org/10.1016/j.comcom.2010.01.007
mailto:ycchan@cc.ncue.edu.tw
mailto:94612005@mail.ncue. edu.tw
mailto:94612005@mail.ncue. edu.tw
mailto:ctchan@bme.ym.edu.tw
mailto:cyho@csie.nctu.edu.tw
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


sending rate, TCP estimates the available network bandwidth via a
bandwidth estimation scheme. In TCP Reno, packet losses are used
to detect network congestion while in TCP Vegas, the queuing de-
lay is used to estimate the network condition. In this section, we
present a summary of these two congestion control mechanisms
and explain why they are incompatible. Then two algorithms,
NewVegas [17] and Vegas-A [18], that attempt to solve the fairness
problem between Vegas and Reno are described.

2.1. TCP reno

TCP Reno uses a congestion window ðCWNDÞ to control the
amount of data transmitted in a round-trip Time ðRTTÞ and a max-
imum window ðMWNDÞ that is set by the receiver to limit the max-
imum value of CWND. The congestion control scheme of Reno can
be divided into three phases: slow-start, congestion avoidance, and
fast retransmission and fast recovery. In the interest of conciseness,
we only describe the congestion avoidance phase since it is most
closely related to our work. The descriptions of the other two
phases can be found in [1].

Since the window size in the slow-start phase expands expo-
nentially, packets sent at this increasing speed would quickly lead
to network congestion. To avoid this, the congestion avoidance
phase begins when CWND exceeds a preset slow-start threshold
ðssthreshÞ. In this phase, CWND is incremented by 1=CWND packet
every time an ACK is received in order to make CWND grow line-
arly. This process continues until a packet loss is detected; subse-
quently the scheme switches to the fast retransmission and fast
recovery phase.

2.2. TCP vegas

TCP Vegas adopts a more sophisticated bandwidth estimation
scheme that attempts to avoid congestion rather than react to it.
It uses the measured RTT to accurately calculate the number of data
packets that a source can send. Vegas features three improvements
as compared to TCP Reno: (1) a modified slow-start mechanism, (2)
an improved congestion avoidance mechanism, and (3) a new
retransmission mechanism. Its window adjustment algorithm also
consists of three phases. The CWND is updated based on the cur-
rently executing phase. Fig. 1 shows the state transition diagram
of TCP Vegas. A connection begins with the slow-start phase. The
window-adjustment phase transition is attributable to specific
events, as depicted along the edges.

2.2.1. Slow-start
During the slow-start phase, Vegas allows a connection to

quickly ramp up to the available bandwidth. However, in order
to detect and avoid congestion during this phase, Vegas doubles
its CWND only every other RTT. In between, the CWND remains
fixed so that a valid comparison of the Expected and Actual sending
rates can be made. Vegas estimates a suitable amount of extra data
to be maintained in the network pipe and controls the CWND
accordingly. It records RTTs and sets the BaseRTT to the minimum
RTT value measured. The amount of extra data ðDÞ is estimated
as follows:

D ¼ ðExpected� ActualÞ � BaseRTT; ð1Þ

where Expected rate is the current CWND size divided by the
BaseRTT, and Actual rate is the CWND divided by the newly mea-
sured smoothed RTT.

This detection mechanism is applied during the slow-start
phase to decide when to switch the phase. If the estimated amount
of extra data is greater than the threshold c, Vegas reduces its
CWND by one-eighth and transitions from the slow-start phase
to the congestion avoidance phase.

2.2.2. Congestion avoidance
During the congestion avoidance phase, Vegas does not contin-

ually increase the CWND. Instead, it attempts to detect incipient
congestion by comparing the Actual rate with the Expected rate.
The CWND is kept constant when D lies between two thresholds
a and b. If D is greater than b, it is considered to indicate incipient
congestion and thus the CWND is reduced. On the other hand, if D
is lesser than a, the connection may be underutilizing the available
bandwidth and thus the CWND is increased. CWND is updated on a
per-RTT basis. The rule for updating CWND can be expressed as
follows:

CWND ¼
CWNDþ 1; if D < a
CWND� 1; if D > b

CWND; if a 6 D 6 b

:

8><
>: ð2Þ

2.2.3. Fast retransmission and fast recovery
TCP Vegas measures the RTT for every packet sent based on fine-

grained timer values. By using fine-grained RTT measurements, a
timeout period is computed for each packet. When a duplicate
ACK is received, Vegas checks whether or not the timeout period
of the oldest unacknowledged packet has expired. If it has, the
packet is retransmitted. This modification leads to packet retrans-
mission after just one or two duplicate ACKs. When a non-duplicate
ACK that is the first or second ACK after a fast retransmission is re-
ceived, Vegas again checks for the expiration of the oldest unac-
knowledged packet following which it may retransmit another
packet.

After a packet retransmission is triggered by a duplicate ACK
and the ACK of the lost packet is received, the CWND will be re-
duced to alleviate the network congestion. Vegas sets the CWND
in two cases. If a lost packet has been transmitted just once, the
CWND will be three-fourth of the previous window size. Otherwise,
it is considered to indicate more serious congestion, and CWND is
set to one half of the previous window size. It should be noted that
if multiple packet losses occur during one round-trip time and trig-
ger more than one fast retransmission, the CWND will be reduced
only for the first retransmission.

Fig. 1. State transition diagram of Vegas.

1014 Y.-C. Chan et al. / Computer Communications 33 (2010) 1013–1029



Download English Version:

https://daneshyari.com/en/article/450173

Download Persian Version:

https://daneshyari.com/article/450173

Daneshyari.com

https://daneshyari.com/en/article/450173
https://daneshyari.com/article/450173
https://daneshyari.com

