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a b s t r a c t

The game-theoretic model in this paper provides micro-foundations for the effect a harsher environment
on the probability of cooperation among multiple players. The harshness of the environment is
alternatively measured by the degree of complementarity between the players’ cooperative efforts in
producing a public good, and by the number of attacks on an existing public good that the players can
collectively defend, where it is shown that these two measures of the degree of adversity facing the
players operate in a similar fashion. We show that the effect of the degree of adversity on the probability
of cooperation is monotonous, and has an opposite sign for smaller and for larger cooperation costs. For
intermediate cooperation costs, we show that the effect of a harsher environment on the probability of
cooperation is hill-shaped.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Among several evolutionary explanations of cooperation
(Dugatkin, 2002; Sachs et al., 2004; Lehmann and Keller, 2006;
Nowak, 2006), a particular simple explanation is found in by-
product mutualism (West Eberhard, 1975; Brown, 1983): play-
ers cooperate because it is in their individual interests to do so,
and any benefit that this produces for other players is a mere
by-product. Mesterton-Gibbons and Dugatkin (1992, 1997) ar-
gue that by-product mutualism arises particularly in harsh envi-
ronments, leading to the so-called common-enemy hypothesis of
by-product mutualism. The purpose of this paper is to provide
micro-foundations for this common-enemy hypothesis in the set-
ting of cooperation between multiple players.

Mesterton-Gibbons and Dugatkin (1992, 1997) formalize the
common-enemy hypothesis bymeans of a two-player gamewhere
each player can either cooperate, or defect. Define R as the reward
from jointly cooperating, T as the temptation payoff of unilaterally
deviating from joint cooperation, S as the sucker payoff obtained
when unilaterally cooperating, and P as the punishment payoff
of joint defection. Let it be the case that the harshness of the
environment can be reflected by a single measure, referred to as
the degree of adversity. Mesterton-Gibbons and Dugatkin assume
that the degree of adversity positively affects both (R− T ) (i.e., the
added payoff of cooperating jointly) and (S − P) (i.e., the added
payoff of cooperating alone), and that (R − T ) > (S − P). The
consequence is that, as the degree of adversity is increased, one
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moves from a game where joint defection is the only evolutionary
stable state (henceforth ESS; Maynard Smith and Price, 1973), to a
gamewhere both joint defection and joint cooperation are ESS’s, to
finally a game where joint cooperation is the only ESS, illustrating
the common-enemy hypothesis. Yet, micro-foundations of how
the degree of adversity affects the payoffs are not provided. At
a more general level, in literature linking cooperation to harsh
environments, the mechanism by which the degree of adversity
affects cooperation is not clear (Sandoval and Wilson, 2012), and
theoretical underpinnings are missing (Smaldino et al., 2013).

For the two-player case, De Jaegher and Hoyer (2016a) provide
micro-foundations for the effect of the degree of adversity bymod-
eling cooperation in two ways. In their first model, cooperation
consists of the production of a public good, and a higher degree
of adversity is linked to a higher degree of complementarity be-
tween players’ contributions to the public good. For instance, in
a cooperative hunt (see, e.g., Scheel and Packer, 1991 on cooper-
ative hunting by lions), when facing the harsher environment of
a larger prey (Mesterton-Gibbons and Dugatkin, 1992; Dugatkin,
2002), each predator’s effort may becomemore pivotal in ensuring
a successful hunt. In particular, a division of labor may be needed
where each predator takes on a specific role (see e.g. Stander, 1992;
Leimar and Connor, 2003).WhatMesterton-Gibbons and Dugatkin
(1992, 1997) call the boomerang effect now applies, where a player
who unilaterally deviates from joint cooperation is the victimof his
own cheating: as he takes on a specific, pivotal role in the coopera-
tive group, unilateral deviation means that little of the public good
is produced. One would therefore expect the common-enemy hy-
pothesis to apply. Yet, as argued by De Jaegher and Hoyer (2016a),
the harsher environment of, e.g., a larger prey, and the attached
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higher degree of complementarity between players’ contributions,
alsomake the added payoff of cooperating alone decrease. A sucker
effect applies, where unilateral deviation from joint defection is
unattractive; if every player takes on a specific role in the cooper-
ative group, then unilaterally cooperating does not produce much
value of the public good. Looking at the sucker effect in isolation,
rather than the common-enemy hypothesis applying, one would
expect a competing hypothesis to apply, where a harsher environ-
ment makes cooperation less likely.

The same mechanisms apply in the second model treated in
De Jaegher and Hoyer, where cooperation consists of the defense
of an existing public good, and where a harsher environment
is measured by a larger number of attacks on the players. For
instance, male lions defend territories in order to keep exclusive
access to females (Grinnell et al., 1995; other possible examples of
territorial defense include Gese, 2001, and Rubenstein and Nuñez,
2009; see Port et al., 2011 for a more general treatment). Also,
prey collectively defend against predators (Mesterton-Gibbons
and Dugatkin, 1992, p. 274; Spieler, 2003). In De Jaegher and
Hoyer’s (2016a) model of collective defense, as long as players’
contributions to collective defense are complementary to a
sufficient extent, a harsher environment also causes a boomerang
and a sucker effect: a larger number of attacks on the one hand
makes it less attractive to deviate from joint cooperation (as a
unilaterally defecting player is more likely to be attacked), and
on the other hand makes it less attractive to deviate from joint
defection (as a unilaterally cooperating player is less likely tomake
a difference).

For both models, De Jaegher and Hoyer show that the
boomerang effect is the dominant effect for large cooperation costs,
in which case the common-enemy hypothesis applies. For small
cooperation costs, the competing hypothesis applies instead. Yet,
a weakness of their model is that it only considers two players,
and not the empirically more relevant case of multiple players. It
is not clear then, first, whether similar results apply in the case of
multiple players (in general, as pointed out by e.g. Peña et al., 2014,
Gokhale and Traulsen, 2014, and Broom and Rychtář, 2016 having
more than twoplayersmakes the selection gradient non-linear and
may change the number of fixed points); second,whether the cases
of large and small cooperation costs both remain equally relevant
in the case of multiple players. The present paper analyzes the
multi-player case, and not only identifies similarities to, but also
critical differences with, the two-player case.

2. General setting

We start with a general setting for public goods games, which
fits both a public goods gamewhere players produce a public good
(Section 3), and a public goods game where players defend an ex-
isting public good (Section 4). The public goods games we consider
are one-shot, have n players (n ≥ 2), are binary, and have constant
costs. Our players face the binary choice of either investing in the
public good (= cooperate), or not investing (= defect). We assume
an infinitely large, well-mixed population that reproduces asexu-
ally. At any given point of time, the population contains a fraction
x of cooperators, and a fraction (1 − x) of defectors. The popula-
tion is repeatedly and randomly matched in groups of n players. In
line with these assumptions, the change in the fraction of cooper-
ators x follows the continuous replicator dynamics (Hofbauer and
Sigmund, 1998), and is determined by the performance of cooper-
ators relative to defectors:

ẋ = x (1 − x) [fC (x) − fD (x)], (1)

where [fC (x)−fD (x)] is the gain function of cooperating rather than
defecting, andwhere fC (x) denotes the average fitness of cooperat-
ing and fD (x) denotes the average fitness of defecting, as a function

of the fraction of cooperators x. These fitnesses equal respectively

fC (x) =

n−1
k=0


n − 1

k


xk (1 − x)n−1−k bk+1 − c (2)

fD (x) =

n−1
k=0


n − 1

k


xk (1 − x)n−1−k bk. (3)

Eqs. (2) and (3) can be understood as follows. First, when exactly
k other players cooperate in a group, this generates a benefit bk to
the focal player in this group who defects, and a benefit bk+1 to the
focal player in this group who cooperates. These benefits consti-
tute a public good to the given group, as they are non-excludable
(Dionisio and Gordo, 2006): each player in a group always obtains
the same benefit. As we limit ourselves to constant cost games, co-
operating comes at a constant cost c. Second, players in the pop-
ulation are randomly matched in groups of size n, with n ≥ 2. It
follows that from the perspective of a focal player, the number k of
cooperators among the (n − 1) other players in his current group
follows a binomial distribution (cf. Archetti and Scheuring, 2012;
Peña et al., 2014). The individual cooperator will have at least one
cooperator (namely himself) in his group, so that the number of
cooperators ranges from 1 to n. The individual defector will have
at most (n − 1) cooperators in his group, so that the number of
cooperators ranges from 0 to (n − 1).

We now use concepts introduced in Peña et al. (2014), which
allow for a simple characterization. The benefit sequence is the se-
quence of all benefits, b = (b0, b1, . . . , bn). For k such that 0 ≤ k ≤

(n−1), denote the first forward difference of bk as△bk = bk+1−bk
(which is the equivalent of the first derivative of a real function).
For k such that 0 ≤ k ≤ (n − 2), denote the second forward dif-
ference of bk as △

2 bk = △bk+1 − △bk (which is the equivalent
of the second derivative of a real function). △bk is the added ben-
efit (or incremental benefit) of cooperating rather than defecting
in a group where k other players cooperate, where the added ben-
efit sequence is the sequence △b = (△b0, △b1, . . . ,△bn−1). The
shape of b and△b together characterizes the ‘‘technology’’ through
which players’ investments get turned into value of the public good
(a taxonomy of extreme cases of such technologies is found in Hir-
shleifer, 1983). We limit ourselves to technologies where b is an
increasing sequence, meaning △b > 0; simply, the value of the
public good generated increases in thenumber of investing players.

The technologies we consider are distinguished by the sign of
△

2 b (i.e., the sign of △
2 bk, for k such that 0 ≤ k ≤ (n − 2); cf.

Motro, 1991). First, with a convex technology, it is the case that
△

2 b > 0, meaning that b is convex (and that △b is increasing).
Starting from a situation with only defectors in a group, if one con-
secutively adds cooperators to the group, each additional cooper-
ator adds more and more value to the public good. A limit case
of the convex technology is the weakest-link technology, where
b0 = b1 = · · · = bn−1 = 0, and bn > 0 (meaning that △b0 =

△b1 = · · · = △bn−2 = 0, △bn−1 > 0), so that benefits are only
obtained in case all players in a group cooperate; as soon as at least
one player defects, zero benefits are obtained. In this limit case, the
public goods game is a weakest-link game (Hirshleifer, 1983).

Second, with a concave technology, it is the case that △
2 b < 0,

meaning that b is concave (and that △b is decreasing). Starting
from a situationwith only defectors in a group, if one consecutively
adds cooperators to the group, each additional cooperator adds
less and less to the value of the public good. A limit case of the
concave technology is the best-shot technology, where b1 = b2 =

· · · = bn > 0, and b0 = 0 (meaning that △b1 = △b2 = · · · =

△bn−1 = 0, △b0 > 0), so that maximal benefits of the public good
are obtained as soon as at least one player in a group cooperates.
In this limit case, the public goods game is a so-called volunteer’s
dilemma (Diekmann, 1985).
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