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h i g h l i g h t s

• Inference of population density under a coalescent model on a spatial continuum.
• Parameter inference based on Markov chain Monte Carlo and data augmentation.
• Estimation of dispersal distance and population density of the FLU virus.
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a b s t r a c t

Understanding population dynamics from the analysis of molecular and spatial data requires sound
statistical modeling. Current approaches assume that populations are naturally partitioned into discrete
demes, thereby failing to be relevant in cases where individuals are scattered on a spatial continuum.
Other models predict the formation of increasingly tight clusters of individuals in space, which, again,
conflicts with biological evidence. Building on recent theoretical work, we introduce a new genealogy-
based inference framework that alleviates these issues. This approach effectively implements a stochastic
model in which the distribution of individuals is homogeneous and stationary, thereby providing a
relevant null model for the fluctuation of genetic diversity in time and space. Importantly, the spatial
density of individuals in a population and their range of dispersal during the course of evolution are
two parameters that can be inferred separately with this method. The validity of the new inference
framework is confirmed with extensive simulations and the analysis of influenza sequences collected
over five seasons in the USA.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Kingman’s coalescent (Kingman, 1982) is a cornerstone of
population genetics. It provides a mathematical framework in
which the effective size of a population can be estimated through
the comparative analysis of genetic data from a sample of
individuals. The simplicity and utility of the coalescent explains
its popularity in biology (see Nordborg, 2001 for a review).
In its simplest form, the coalescent defines the probability
density of a genealogy of individuals sampled from a constant
size, panmictic population. However, the panmixia assumption
becomes problematic when considering the spatial distribution
of individuals as degree of kinship is generally correlated with
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geographic distance (Ramachandran et al., 2005; Novembre et al.,
2008; Lao et al., 2008).

The coalescent was thus extended to incorporate spatial
information. Under the so-called structured coalescent (Hudson,
1990; Notohara, 1990), the population is partitioned into demes,
each deme corresponding to a geographic entity. Sub-populations
within each deme are panmictic and only individuals in the same
deme can coalesce. Migrations between demes are governed by an
homogeneous Markov process with the migration rate assumed to
be small and estimated from the combination of spatial and genetic
data. The structured coalescent has obvious connections with
standard models in population genetics, namely the island model
(Wright, 1931; Maruyama, 1970) and the stepping stone model
(Malécot, 1951; Kimura and Weiss, 1964) which mathematical
properties are well understood. Inference under the structured
coalescent using maximum-likelihood (Beerli and Felsenstein,
1999, 2001) and Bayesian techniques (Ewing et al., 2004; Beerli,
2006; Vaughan et al., 2014) has led to important advances
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in biology (e.g., Roman and Palumbi, 2003), but is limited for
computational reasons to a relatively small number of demes
(typically less than ten) which are assumed to be known a priori
(Vaughan et al., 2014).

But many natural populations are not subdivided into discrete
demes. Instead, they display a gradient of kinship across a
continuous landscape. In seminal works, Wright (1943) and
Malécot (1948) proposed an extension of the Wright–Fisher
model that incorporates continuous spatial information. Under
the so-called ‘‘isolation-by-distance’’ (IBD) model, individuals are
uniformly distributed on the landscape and the locations of
offspring are random draws from a Normal distribution with
mean given by the parental position. Mathematical expressions
were derived for the probability that two alleles are identical
by descent as a function of their spatial distance. However,
Felsenstein (1975) showed that some of the assumptions of the
IBD model are inconsistent. A population evolving under this
process displays ‘‘clumping’’ of individuals, which contradicts the
uniformity assumption. The IBD model may provide a suitable
inference framework when considering short time scales over
which clumping can safely be ignored. In the general case,
however, it is preferable that the spatial distribution of the
population is described by a stationary process.

Sawyer and Felsenstein (1981) addressed this issue in a
modified version of the IBD model where the spatial distribution
of individuals is governed by a Poisson random field with density
constant in time. However, their model relies on the assumption
that each pair of parents produces exactly two offspring, which
is constraining from a biological perspective. Moreover, their
approach applies to the special case of a one-dimensional habitat
and generalization to two dimensions leads to mathematical
difficulties (Nagylaki, 1986).

Wilkins and Wakeley (2002) proposed a different approach
in which a population is uniformly distributed along a one-
dimensional finite habitat with the location of parents correlated
to that of offspring. Importantly, each individual occupies an
interval inversely proportional to the size of the population,
thereby ensuring that population density is regulated at all points
in space and time. This model assumes that the spatial position
of each lineage is subject to a diffusion process backward in
time, with the habitat having reflecting boundaries. The authors
were able to derive analytic formula for the distribution of the
time to coalescence of a pair of sampled lineages. Wilkins (2004)
later proposed a generalization of this model to two-dimensional
landscapes. However, Barton et al. (2010a) suggested that this
approach is sampling inconsistent, i.e., the distribution of the time
to coalescence of a pair of sampled lineages depends on the size
of the sample under consideration. Estimates of parameters of this
model may thus be difficult to interpret in practice.

More recently, Lemey et al. (2009) proposed a model whereby
spatial location is considered as a discrete character evolving
along lineages according to a continuous-time Markov chain.
Unfortunately, this approach suffers serious limitations. First,
estimates of rates of migration are influenced by spatial variations
in sampling intensity. Moreover, non-uniformity of population
density is ignored when calculating the density of the genealogy.
Also, this model is a discrete approximation of the IBD model
when the migration process is isotropic and thus suffers from the
same shortcomings. Altogether, while this approach is efficient
from a computational perspective, it provides biased estimates
of demographic parameters in particular simulation settings (De
Maio et al., 2015) and should thus be used with great caution.

In a recent series of articles (Etheridge, 2008; Berestycki et al.,
2009; Barton et al., 2010a,b; Véber andWakolbinger, 2015; Barton
et al., 2013b), Barton, Etheridge and colleagues described a new
process, called the spatial Λ-Fleming–Viot process, for studying

the evolution of populations on a continuous landscape. Malécot’s
approach and related models consider that the time of death and
reproduction of individuals are governed by a random process
running along every lineage in the evolving population. The new
model assumes instead that the time and position of these events
are independent of the spatial location of lineages. The authors
describe the forward-in-time dynamics of a population evolving
on an unbounded spatial continuum, and the corresponding
backward-in-time process that characterizes the genealogy of
sampled individuals.

The mathematical properties of the spatial Λ-Fleming–Viot
model have been studied extensively (Berestycki et al., 2009;
Barton et al., 2010a; Véber and Wakolbinger, 2015; Barton et al.,
2013b). In particular, it has been shown that this model does
not suffer from sampling inconsistency or clumping issues. Barton
et al. (2013a) showed that the analysis of pairs of sub-populations
provides information about neighborhood size, i.e., the product of
the effective population density by the dispersal intensity. These
last two quantities are relevant from a biological perspective and,
ideally, one would like to estimate each of them separately instead
of their product.

In this study, we perform Bayesian inference under the
spatial Λ-Fleming–Viot model applied to multiple individuals
taken jointly. Using extensive simulations where geo-referenced
nucleotide sequences are generated under thismodel and sampled
using a biologically realistic approach, we show that its parameters
can indeed be estimated with a standard inference technique.
Estimates of population demographic parameters are compared
to that obtained using two popular inference techniques, i.e., the
regression on fixation index (Fst) values (Rousset, 1997) and
the structured coalescent (Hudson, 1990; Notohara, 1990). Our
results demonstrate the good performance of our approach in
these conditions. They also indicate that the proposed framework
permits the estimation of population density and dispersal
intensity as two separate (i.e., identifiable) parameters, thereby
going beyond the traditional moment-based estimation technique
based on Fst. We further illustrate the validity of this new
technique through the analysis of H1N1 sequences collected
over five flu seasons in the USA. We show that the 2009 flu
pandemic had distinct population dynamics compared to more
recent seasons with smaller than usual neighborhood size and
larger than usual dispersal distance.

2. The model

The spatial Λ-Fleming–Viot model (noted as ΛV from here on
for the sake of brevity) assumes that reproduction, dispersal and
death of lineages result from ‘‘events’’ that occur at locations in-
dependent from that of individuals forming the population under
scrutiny. In the following, we refer to these events as reproduc-
tion/extinction or REX events. From a biological perspective, one
REX corresponds to either (i) a single reproduction event accom-
panied by extinction of the parent with the offspring dispersing
over long distances or (ii) a sum of multiple reproduction and ex-
tinction events, each reproduction accompanied by dispersal of the
offspring over short distances. In any case, the average time be-
tween two successive REX in a given lineage is proportional to the
generation time of the species under scrutiny.

2.1. Forward-in-time dynamics of the population

We assume that a population inhabits a finite habitat repre-
sented by a rectangle R(h, w), with height h and width w known
a priori. Migrations crossing the boundaries of the rectangle are
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