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a b s t r a c t

Questions surrounding the prevalence of complex population dynamics form one of the central themes
in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised
theoretically, although their importance and applicability to natural populations remains debatable. The
ecological processes underlying such dynamics are thought to be numerous, though there seems to be
consent as to delayed density dependence being one of the main driving forces. Indeed, time delay
is a common feature of many ecological systems and can significantly influence population dynamics.
In general, time delays may arise from inter- and intra-specific trophic interactions or population
structure, however in the context of single species populations they are linked tomore intrinsic biological
phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the
spatiotemporal dynamics of a single species population using two different mathematical formulations.
Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some
specified delayed argument. We then modify the model by incorporating a spatial convolution which
results in a biologically more viable integro-differential model. Using the combination of analytical and
numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show
that for sufficiently large values of time delay the system’s dynamics are indicative to spatiotemporal
chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either
a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Factors and mechanisms determining the spatial population
distribution of ecological species are a major focus of interest
in ecology (Fortin and Dale, 2005; Ritchie, 2010). Often the
distribution shows remarkable spatial variability, which is usually
referred to as patchiness (Levin, 1994; Rietkerk et al., 2004), where
areas or ‘patches’ of high population density are separated from
areas where the given species is either present at a very low
density or is absent altogether. A classical example of such a patchy
spatial distribution is given by plankton (Levin and Segel, 1976;
Martin, 2003), although terrestrial species, in particular insects,
often exhibit considerable spatial variability aswell (Liebhold et al.,
2013).

One obvious explanation of this phenomenon is swarming be-
haviour (Okubo, 1986), especially when it is reinforced by social
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interactions between the animals (e.g. Mogilner and Edelstein-
Keshet, 1999; Mogilner et al., 2003) and/or by taxis (Tyutyunov
et al., 2004, 2009). On a larger spatial scale, an intuitive explana-
tion of the spatial heterogeneity in species distribution lies in en-
vironmental variability, e.g. spatial distribution is being driven by
the heterogeneous distribution of resources (Liebhold et al., 1994;
Grünbaum, 2012). However, in many cases this does not seem to
be the case as the observed population distributions appear to be
largely uncorrelated with the environment (Powell et al., 1975;
Sharov et al., 1997). The heterogeneous spatial population distri-
bution can also arise as a result of biotic interactions. In particular,
there is a large body of literature showing, both theoretically and
empirically, that a spatial pattern can be a result of predator–prey
or host-parasite interactions (Hassell et al., 1991; Hastings et al.,
1997; Davis et al., 1998; Petrovskii and Malchow, 1999; Jankovic
and Petrovskii, 2013), or multi-specific competition (Petrovskii
et al., 2001; Adamson and Morozov, 2012; Mimura and Tohma,
2014). Note that, in the case of biotic-driven pattern formation, the
patterns can be regarded as self-organised, i.e. they are not related
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to any external forcing; in fact, they can arise in a uniform environ-
ment.

Self-organisedpattern formation is often related to instability of
the spatially uniform distribution; a well-known example is given
by the Turing instability (Segel and Jackson, 1972; Klausmeier,
1999). A necessary condition of the Turing instability is the
differing diffusivity of interacting species; in order to make the
instability practically observable (i.e. to occur in a reasonably
broad range of population dynamics’ parameters), the diffusion
coefficients have to be at least an order of magnitude apart. This
large difference in the mobility of a prey and its predator does not
often happen, and hence the ecological importance of the Turing
scenario of pattern formation is rather limited (but see Sherratt,
2013).

An alternative mechanism is sometimes referred to as biolog-
ical turbulence1 or a ‘‘wave of chaos’’ (Petrovskii and Malchow,
2001) which becomes possible when the dynamics of the inter-
acting species are oscillatory. From a theoretical perspective, this
is usually related to the existence of a stable limit cycle, e.g. see
Turchin (2003). The properties of the population’s spatial distribu-
tion emerging due to this mechanism were shown to be in agree-
ment with field observations (Medvinsky et al., 2002; Petrovskii
et al., 2003; Malchow et al., 2008). However, the capacity of bio-
logical turbulence to explain patchiness of ecological populations
is somewhat limited too, as the existence of the limit-cycle popu-
lation oscillations requires interaction of the given species (prey)
with its specialist predator (cf. Rosenzweig, 1971;May, 1972). Spe-
cialist predators are relatively rare in nature and that may explain
why genuine predator–prey cycles are not often seen.2 As long
as the predator is a generalist, in a realistic multi-species com-
munity predator–prey cycles are unlikely to occur, as the changes
in the density of prey become uncoupled from that of the preda-
tor because of the complicated switching behaviour of the latter
(Comins and Hassell, 1976; Holt, 1983; Morozov and Petrovskii,
2013; Van Leeuwen et al., 2013). Heterogeneous population distri-
bution is therefore a far more general phenomenon than the the-
oretical mechanisms that have by far been brought forward as its
explanation.

There is, however, another feature of population dynamics
as ubiquitous as species heterogeneity, and this is time delay.
Delayed density dependence is thought to be one of the main
factors causing population fluctuations (Berryman and Turchin,
1997). The most commonly considered causal mechanisms are
resource competition (Hansen et al., 1998), cannibalism (Briggs
et al., 2000), and maternal effects (Ginzburg and Taneyhill, 1994)
where the nutritional environment of the parental generation
can influence the growth and reproductive potential of the
next generation. Delays may also occur as a consequence of
developmental time and/or interaction between individuals of
different stages (Royama, 1981; Hastings, 1984). In mathematical
terms, the destabilisation of a positive steady state, both in
nonspatial and spatial systems, usually occurs through the Hopf
bifurcation (Green and Stech, 1981; Fowler, 1982; Busenberg and
Huang, 1996; Li et al., 2008; Su et al., 2009) that leads to limit-cycle
oscillatory behaviour. We mention here that such destabilisation
does not always happen; in particular, if the population growth
is damped by a strong Allee effect, an increase in time delay does
not necessarily lead to the Hopf bifurcation, e.g. see Jankovic and
Petrovskii (2014).

1 The term ‘‘biological turbulence’’ was suggested to Sergei Petrovskii by Lutz
Schimansky-Geier in a private discussion in 1999.
2 The famous hare-lynx cycle (Elton and Nicholson, 1942; May, 1975) is

sometimes regarded as the only available example, although there are different
opinions on that (cf. Sherratt and Smith, 2008) and the discussion is by no means
over.

In this paper, we examine the inherent relation between these
two phenomena, i.e. time delays and pattern formation.We are es-
pecially interested in the possibility of the onset of spatiotemporal
chaos and, respectively, the formation of irregular spatial patterns.
We mention here that, whilst the dynamics of time-delayed non-
spatial systems are understood relatively well, time-delayed spa-
tial systems pose amuch bigger challenge. Although there is a large
body of literature concerned with time-delayed spatially explicit
population dynamics (e.g. see the references above), the vast ma-
jority of it is concerned with either a travelling front or a periodic
pattern (Ashwin et al., 2002; Yoshida, 1982; Su et al., 2009). Mean-
while, in population systems where limit cycles appear for other
reasons (i.e. not related to time delay), travelling waves and peri-
odic patterns are known to be only a part of the rich spectrum of
spatiotemporal dynamics (Petrovskii and Malchow, 2000) that, in
particular, may exhibit chaotic oscillations (Sherratt et al., 1995;
Sherratt, 2001; Petrovskii et al., 2001). Correspondingly, the pos-
sibility of spatiotemporal pattern formation and chaos in a single
species population with time delay is our main interest here. We
first consider pattern formation triggered by travelling population
fronts in a heuristic delayed diffusion–reaction equationwhere the
delay is included into the per capita growth, and reveal the onset
of spatiotemporal chaos in the wake of the front. We then consider
a somewhat more realistic model where the delay is appropriately
spatially averaged (Britton, 1990; Gourley and Bartuccelli, 1995;
Gourley and Chaplain, 2002; Ashwin et al., 2002), which results
in an integro-differential model, and show that it exhibits quali-
tatively similar properties such as, in particular, the onset of chaos.

The remainder of the paper is organised as follows. In the fol-
lowing section (Section 2) we introduce our modelling framework
and revisit known analytical results for the stability condition and
loss ofmonotonicity conditions for bothHutchinson’s equation and
the diffusive logistic equation. We then investigate through nu-
merical simulations the effect time delay has on the diffusive logis-
tic model (Section 3). In Section 4, we introduce a modified model
and discuss the concept and reasoning behind the spatial averag-
ing, as well as presenting numerical results. Section 5 summarises
our findings.

2. Modelling framework and some analytical results

Temporal dynamics of a single species population can be
described by the following generic ordinary differential equation:

dU
dt

= Uf (U), (2.1)

where U is the population size (density) and f (U) describes the
per capita growth. For many populations the observed biolog-
ical reality imposes a saturation level, known as the carrying
capacity, which forms a numerical upper bound on growth. Corre-
spondingly, the simplest form of such, the Verhulst-Pearl logistic
equation is frequently used to model self-limiting populations:

dU
dt

= rU

1 −

U
K


, (2.2)

where r is the intrinsic rate of growth and K is the carrying
capacity. Logistic growth implies rapid initial growth at low pop-
ulation densities and a nearly exponential decay to the popu-
lation’s carrying capacity due to the negative feedback through
intraspecific competition. Admittedly a simple model, such be-
haviour is in qualitative agreement with observed dynamics of
many populations, especially under laboratory, resource-limited,
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