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a b s t r a c t

Most population genetics studies have their origins in a Wright–Fisher or some closely related fixed-
population model in which each individual randomly chooses its ancestor. Populations which vary in
size with time are typically modelled via a coalescent derived from Wright–Fisher, but use a nonlinear
time-scaling driven by a deterministically imposed population growth. An alternate, arguably more
realistic approach, and one which we take here, is to allow the population size to vary stochastically via a
Galton–Watson branching process.

We study genetic drift in a population consisting of a number of distinct allele types in which each
allele type evolves as an independent Galton–Watson branching process. We find the dynamics of the
population is determined by a single parameter κ0 = (2m0/σ

2) log λ, where m0 is the initial population
size, λ is the mean number of offspring per individual; and σ 2 is the variance of the number of offspring.
For 0 . κ0 ≪ 1, the dynamics are close to those of Wright–Fisher, with the added property that the
population is prone to extinction. For κ0 ≫ 1 allele frequencies and ancestral lineages are stable and
individual alleles do not fix throughout the population. The existence of a rapid changeover regime at
κ0 ≈ 1 enables estimates to be made, together with confidence intervals, of the time and population size
of the era of mitochondrial Eve.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The traditional starting point in population genetics for the con-
sideration of genetic drift and related phenomena has been the
Wright–Fisher model, often with caveats about its limitations and
lack of biological realism (Ewens, 2004). A key constraint on the
Wright–Fisher model is that the population is assumed to be of
constant size: that is, not only is the mean size of the population
constant over time, but the population size does not vary stochas-
tically. The assumption of a constant mean size is often appro-
priate biologically, on the basis that the population is at a limit
constrained by the availability of food, space or other factors, as
argued in Kingman (1982a). In other cases, such as the study of
human populations or arguably of new species, a model allowing
for population growth may be more relevant. The assumption that
there is no stochastic influence on overall population size cannot
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be entirely accurate in relation to any natural population and it
is of interest to understand the costs of making such an assump-
tion. For example, it is well accepted that stochastic influences are
particularly strong for small population sizes. The differing views
between the pioneers of population genetics Ronald Fisher and
Sewall Wright on the relative significance of drift and selection
are surveyed in Ewens (2004, Section 1.7), with Fisher having em-
phasised the role of natural selection over stochastic effect in large
populations andWright having given more attention to the effects
of drift in relatively small populations. The relative importance of
drift (and mutation) and selection on biological populations con-
tinues to be debated into the present era as exemplified by Lynch
(2007).Wewill see that in the context of a growing population, the
degree of influence of stochastic processes is dependent not only
on population size, but rather on a parameter combining popula-
tion size and growth rate.

In this context, there have been a number of studies addressing
by theory or simulation studies the effect of variable and in
particular exponential population growth (Slatkin and Hudson,
1991; Keinan and Clark, 2012; Rogers and Harpending, 1992;
Rogers, 2014). Exponential population growth may be considered
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as the simplest model extending the assumption of constant
population size. Two approaches are evident. The first is by an
extension of the Wright–Fisher model to the case of variable
population size based on transformation of the time variable to
reflect the local rate of change of population size (Griffiths and
Tavaré, 1994). This approach retains the assumption that overall
population size is deterministic, and that theWright–Fisher model
describes the relationship of one generation to its successor. This
approach is conducive to efficient simulation and to a considerable
degree of analytic study. However, it potentially leads to inaccurate
estimation of population parameters due to underestimation of
the variability in population size, particularly in the early stages of
population growth (Stadler et al., 2015). An alternative approach
(O’Connell, 1995; Cyran and Kimmel, 2010) is to use the theory of
branching processes, and in particular Galton–Watson processes,
to model populations evolving according to a common probability
distribution for the number of offspring on the basis that this
distribution is the same for the entire population and in each
generation.

It is of interest to compare the effects of these population
models (constant-size Wright–Fisher; deterministic growth; and
fully stochastic growth) across various population types. As we
shall see the key population parameter to be considered depends
on both population size and growth rate.

The structure of this paper is as follows. The stochastic model
used throughout, which is equivalent to that of O’Connell (1995),
is set out in Section 2. Section 3 contains a comparison of themodel
with Wright–Fisher for the case of zero mean population growth,
with emphasis on fixation probabilities and times. The case of
supercritical growth is analysed in Section 4. Implications for the
loss or otherwise of heterozygosity under different parameter
regimes are considered in Section 5. An application to the
estimation of the time elapsed since the life of mitochondrial Eve
and humanpopulation size during her lifetime is given in Section 6.
Conclusions are drawn in Section 7, and an Appendix is devoted to
critiquing O’Connell’s analysis of the mitochondrial Eve problem.

2. The model

We consider a population of M(t) haploid individuals which
are assumed to reproduce in discrete, non-overlapping generations
t = 0, 1, 2, . . . . We further assume that the population contains
n allele types and that the number of copies of type i within
the population is Yi(t), thus M(t) =

n
i=1 Yi(t). The alleles are

assumed to be neutral with respect to selection and nomutation is
included in themodel in the current paper. The central tenet of the
model is an assumption that the number of offspring per individual
in any generation is given by a set of identically and individually
distributed (i.i.d.) random variables S(i)

α , α = 1, . . . , Yi(t), whose
common distribution is denoted by a generic non-negative integer
valued random variable S with mean and variance

E(S) = λ, Var (S) = σ 2, (1)

and finite moments to all higher orders. Thus

Yi(t + 1) =

Yi(t)
α=1

S(i)
α , (2)

and if the Yi(0) are mutually independent, then Yi(t) are mutually
independent at all subsequent times t . The standard formula for
themean of the sumof a randomnumber of randomvariables gives
E(Yi(t + 1)) = λE(Yi(t)). Given initial conditions Yi(0) = yi0 and
M(0) = m0 =

n
i=1 yi0, it follows that

E(Yi(t)) = yi0λt , E(M(t)) = m0λ
t . (3)

The Yi(t) represent n independent Galton–Watson branching
processes evolving in parallel. This model differs from the
canonical Wright–Fisher and Cannings exchangeable (Cannings,
1974) models of population genetics primarily in allowing the
mean growth rate λ to take values other than unity, and in not
constraining the sum of the random variables S(i)

α to a constant
value. In the population genetics context, the most widely used
adaptation of these models assumes a deterministic rather than
stochastic growth rate (Slatkin and Hudson, 1991; Griffiths and
Tavaré, 1994) in the context of the Kingman coalescent (Kingman,
1982b). As we shall see, this assumption leads to an underestimate
of the variability in a population, particularly in the early stages
of population growth, when population size or, more precisely the
parameter (2m0/σ

2) log λ, is small (see Stadler et al., 2015 for a
related discussion).

The continuum approximation of a Galton–Watson branching
process via a forward Kolmogorov diffusion equation has been
analysed in detail by Feller et al. (1951) and is summarised by
Bailey (1964) and Cox and Miller (1978). Here we summarise the
derivation using the formal method given in Chapter 4 of Ewens
(2004). For large initial population sizes m0 and yi0, consider the
substitutions

τ = t/m0, Xi(τ ) = Yi(t)/m0, xi0 = yi0/m0. (4)

Set δXi(τ ) = (Yi(t + 1) − Yi(t))/m0 and δτ = 1/m0. In general, if

E(δXi(τ )|Xi(τ ) = x) = a(x)δτ + o(δτ ),

E(δXi(τ )2|Xi(τ ) = x) = b(x)δτ + o(δτ ),

E(δXi(τ )k|Xi(τ ) = x) = o(δτ ), k ≥ 3,
(5)

for finite functions a(x) and b(x) as δt → 0, then the forward
Kolmogorov equation for the density of the distribution of Xi(τ )
takes the form

∂ fXi
∂τ

= −
∂

∂x


a(x)fXi(x, τ )


+

1
2

∂2

∂x2

b(x)fXi(x, τ )


. (6)

In the current case, the limit is obtained by simultaneously taking
m0 → ∞, λ → 1 in such a way that

α = m0 log λ, (7)

and σ 2 remain fixed. One obtains

E(δXi(τ )|Xi(τ ) = x) =
1
m0

(λ − 1)xm0

= αx δτ + o(δτ ), (8)

and

E(δXi(τ )2|Xi(τ ) = x) = Var (δXi(τ )|Xi(τ ) = x)
+ E(δXi(τ )|Xi(τ ) = x)2

=
1
m2

0
σ 2xm0 + O


1
m2

0


= σ 2x δτ + o(δτ ). (9)

Comparing with the general form Eq. (5) yields the forward
Kolmogorov equation for the density function fXi(x, τ ),

∂ fXi
∂τ

= −α
∂

∂x
(xfXi) +

1
2
σ 2 ∂2

∂x2
(xfXi). (10)

The solution forα ≠ 0 and initial condition fXi(x, 0) = δ(x−xi0)
is (see Bailey, 1964, Eqs. (14.49) and (14.53))

fXi(x, τ ) =
2α

σ 2(eατ − 1)


xi0eατ

x

 1
2

exp


−2α(xi0eατ
+ x)

σ 2(eατ − 1)



× I1


4α(xi0xeατ )

1
2

σ 2(eατ − 1)


+ δ(x)p0(τ ), (11)
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