
Theoretical Population Biology 103 (2015) 2–26

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Social evolution and genetic interactions in the short and long term
Jeremy Van Cleve
Department of Biology, University of Kentucky, Lexington, KY 40506, USA

a r t i c l e i n f o

Article history:
Received 14 October 2014
Available online 21 May 2015

Keywords:
Inclusive fitness
Fixation probability
Stochastic stability
Island model
Trait substitution sequence
Cooperation

a b s t r a c t

The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology
even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with
his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the
evolution of social behavior. Early theoretical investigations revealed two critical assumptions required
for Hamilton’s rule to hold in dynamical models: weak selection and additive genetic interactions.
However, only recently have analytical approaches from population genetics and evolutionary game
theory developed sufficiently so that social evolution can be studied under the joint action of selection,
mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under
weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and
(ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously
from one monomorphic trait to another. We show how Hamilton’s rule emerges from the short-term
analysis under additivity and how non-additive genetic interactions can be accounted for more generally.
This short-term approach reproduces, synthesizes, and generalizes many previous results including the
one-third law from evolutionary game theory and risk dominance from economic game theory. Using the
long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a
stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of
the diffusion capture classic notions of convergence stability fromevolutionary game theory and generally
depend on the additive genetic interactions inherent in Hamilton’s rule. Surprisingly, the peaks of the
long-term stationary distribution can predict the effects of simple kinds of non-additive interactions.
Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to
replicate with the short-term approach. Together, the results from the short and long-term approaches
suggest both how Hamilton’s insight may be robust in unexpected ways and how current analytical
approaches can expand our understanding of social evolution far beyond Hamilton’s original work.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The theory of evolution by natural selection as first fully elu-
cidated by Darwin (1859) is so profoundly elegant and compre-
hensive that truly new additions to theory have been extremely
rare. In 1963,W.D. Hamilton began publishing his seminal work on
how natural selection can shape social behavior (Hamilton, 1963,
1964a,b), which is often either referred to as the theory of ‘‘kin se-
lection’’ (Maynard Smith, 1964) or ‘‘inclusive fitness’’ (Frank, 2013).
It is a tribute to the importance of this work that upon his un-
timely death in 2000 Hamilton was called ‘‘one of the most influ-
ential Darwinian thinkers of our time’’ (Eshel and Feldman, 2001)
and a candidate for the ‘‘most distinguished Darwinian since Dar-
win’’ (Dawkins, 2000).
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In this article, we will review how the tools of population
genetics and evolutionary game theory can be used to formalize
Hamilton’s insight. We will begin with a summary of classic
analyses of Hamilton’s approach and will then introduce the
population genetic and game theoretic tools that currently provide
a complete framework for studying social evolution under weak
selection andweakmutation (Lehmann andRousset, 2014b). Using
these tools, we will see how two general timescales for analysis
emerge: a short-term timescale where evolution proceeds among
a finite set of alleles, and a long-term timescale where populations
evolve continuously among a continuum of alleles. These notions
of short and long-term derive from a broader attempt to reconcile
population geneticmethodswith evolutionary game theory (Eshel,
1996; Hammerstein, 1996; Weissing, 1996).

Using the short-term approach, we show how genetic inter-
actions between individuals (e.g. Queller, 1985) can affect se-
lection for cooperation in deme or group-structured populations
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(Ladret and Lessard, 2007). These results extend previous anal-
yses of stochastic evolution that have shown conditions such as
‘‘risk dominance’’ (Harsanyi and Selten, 1988; Blume, 1993; Kan-
dori et al., 1993) and the ‘‘one-third law’’ (Nowak et al., 2004; Oht-
suki et al., 2007) to be important determinants of evolutionary
stability. Using the substitution rate approach to long-term evolu-
tion (Lehmann, 2012; Van Cleve and Lehmann, 2013), we describe
a diffusion equation that approximates the long-term change in
monomorphic trait values. We show how peaks in the stationary
distribution of this diffusion captures classic notions of evolu-
tionary and convergence stability. Moreover, the location of these
convergence stable states can be calculated using the classic direct-
fitness approach of kin selection (Taylor and Frank, 1996; Rous-
set and Billiard, 2000; Rousset, 2004). Applying this long-term
approach to a simple non-additive social interaction, we find
surprisingly that the long-term analysis can capture these non-
additive effects even though the diffusion integrates over only ad-
ditive interactions. Moreover, the long-term approach appears to
reproduce results from some strong selection models, which
suggests an unexpected robustness of the long-term diffusion.
Together, the results from the short and long-term approaches re-
veal the usefulness of these approaches for integrating Hamilton’s
original insight with recent results from population genetics and
evolutionary game theory.

1.1. Hamilton’s rule

The core insight in Hamilton’s work is often summarized with
his eponymous rule (Hamilton, 1964a, 1970): an allele for a social
behavior increases in frequency when the ‘‘inclusive fitness effect’’
is positive, namely

−c + b r > 0. (1)

In Hamilton’s rule (1), b is the increase in fitness (benefit) of a
social partner from the behavior of a focal individual, c is the
decrease in fitness (cost) of a focal individual that performs the
behavior, and r measures genetic relatedness between focal and
recipient individuals (Frank, 1998).More generally,−c is called the
‘‘direct fitness effect’’ and b the ‘‘indirect fitness effect’’. Hamilton
(1964a) initially emphasized that genetic relatedness is generated
by a genealogical process that produces alleles identical by
descent (IBD) among a group of socially interacting individuals.
Another general definition of genetic relatedness says that it is
the regression of the genotypes of social partners on the genotype
of the focal individual (Hamilton, 1970; Grafen, 1985). Hamilton’s
rule crystallized the notion that natural selection depends both
on the effect of an individual’s genes on its own fitness and
also on the indirect effect of those genes on the fitness of social
partners. Although Darwin (1859), Fisher (1930), and Haldane
(1955), among others, had expressed this idea in relation to how
evolution would lead one individual to sacrifice its fitness for
another, Hamiltonwas the first to present a compelling framework
applicable to social evolution more generally.

Within Hamilton’s inclusive fitness framework, behaviors that
decrease the fitness of a focal individual (c > 0) but increase the
fitness of social partners (b > 0) are ‘‘altruistic’’. Well-known ex-
amples of altruism include worker sterility in eusocial insects (An-
dersson, 1984), stalk cells that give up reproduction to disperse
spore cells in Dictyostelium discoideum (Strassmann et al., 2000),
and costly human warfare (Hamilton, 1975; Lehmann and Feld-
man, 2008). Other behaviors can also be classified in Hamilton’s
framework (Hamilton, 1964a), and Table 2: (i) behaviors are ‘‘mu-
tualistic’’ when they increase the fitness of the focal individual
and its social partners, (ii) ‘‘selfish’’ when they increase the fitness
of the focal at the expense of the fitness of social partners, and

(iii) ‘‘spiteful’’ when they decrease the fitness of both the focal in-
dividual and its social partners. Although there are other potential
definitions of altruism and other behaviors (see Kerr et al., 2004;
Bshary and Bergmuller, 2008), Hamilton’s classification based on
direct and indirect effects has proven useful for distinguishing dif-
ferent kinds of helping behaviors (mutualisms and altruisms) and
for showing how different biological mechanisms can promote
or inhibit the evolution of these behaviors (Lehmann and Keller,
2006a; West et al., 2007).

Though Hamilton’s approach was initially accepted among em-
piricists (Wilson, 1975) and some theorists (Maynard Smith, 1964;
Oster et al., 1977), other theorists were concerned about the gen-
erality of the approach due to its emphasis on fitness maximiza-
tion and optimality modeling (Cavalli-Sforza and Feldman, 1978;
Williams, 1981; Karlin and Matessi, 1983). Fitness maximization
was viewed as untenable because exampleswhere it is violated are
well known (Moran, 1964). Optimality models were additionally
viewedwith skepticism because, by neglecting gene frequency dy-
namics, they cannot study genetic polymorphisms; in effect, such
models must assume that mutant alleles that invade a population
also reach fixation. An initial wave of population genetic studies
in response to these concerns showed that Hamilton’s rule was
generally a correct mutant invasion condition so long as selec-
tion is weak and fitness interactions between individuals are addi-
tive (Cavalli-Sforza and Feldman, 1978; Wade, 1979; Abugov and
Michod, 1981; Uyenoyama and Feldman, 1981; Uyenoyama et al.,
1981). However, thesemodelswere family structuredwhere coop-
eration occurs between close relatives and could not address the
applicability of Hamilton’s rule in populations with more generic
structure, such as deme structure in island (Wright, 1931) and lat-
tice models (Kimura and Weiss, 1964; Malécot, 1948, 1967).

1.2. The Price equation and the individually-based approach

Part of the difficulty with the population genetic methods used
to analyze family-structured models is that they use genotypes as
state variables. This quickly increases the dimensionality of the
model as the number of loci, family size, or demes increases and
makes approximation difficult. An important alternative approach
was introduced to population genetics by George Price (Price,
1970, 1972). The core of that approach, the Price equation, uses
the distribution of allele frequencies in each individual in the
population as the set of state variables and tracks the first
population-level moment of this distribution, which is the mean
allele frequency. If p = (p1, . . . , pNT) represents the allele
frequency distribution for NT haploid individuals (pi = 0 or 1 for
individual i), the Price equation yields

E [w∆p|p] = Cov [wi, pi] + E [wi∆pi] (2)

where E [w∆p|p] is the expected change in mean allele frequency
pweighted by mean fitness w and conditional on p in the parental
generation. The first term on the right hand side, the covariance
between individual fitnesswi and allele frequency pi, measures the
effect of selection on the change in mean allele frequency in the
population. The second term, E [wi∆pi],measures the effect of non-
selective transmission forces, such asmutation andmigration (and
recombination for changes in genotype frequencies), on the change
inmean allele frequency. When selection is the only force on allele
frequencies and the population size remains fixed (w = 1), the
Price equation simplifies to

E [∆p|p] = Cov [wi, pi] . (3)

Calculating higher-order moments of the allele frequency dis-
tribution p is necessary to measure the exact dynamics of the dis-
tribution over time; thus, moment-based approaches like the Price
equation are not necessarily more tractable than directly tracking
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