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a b s t r a c t

In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote
today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals
of today’s population, the individual whose progeny will eventually take over in the population is of
the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We
develop a construction that contains elements of both the ancestral selection graph and the lookdown
construction and includes pruning of certain lines upon mutation. Besides being interesting in its own
right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a
probabilistic meaning.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The understanding of ancestral processes under selection and
mutation is among the fundamental challenges in population
genetics. Two central concepts are the ancestral selection graph
(ASG) and the lookdown (LD) construction. The ancestral selection
graph (Krone and Neuhauser, 1997; Neuhauser and Krone, 1997;
see also Shiga and Uchiyama, 1986 for an analogous construction
in a diffusion model with spatial structure) describes the set of
lines that are potential ancestors of a sample of individuals taken
from a present population. In contrast, the lookdown construction
(Donnelly and Kurtz, 1999a,b) is an integrated representation that
makes all individual lines in a population explicit, togetherwith the
genealogies of arbitrary samples. See Etheridge (2011, Chapter 5)
for an excellent overview of the area.

Both the ASG and the LD are important theoretical concepts as
well as valuable tools in applications. Interest is usually directed to-
wards the genealogy of a sample, backwards in time until themost
recent common ancestor (MRCA). However, the ancestral line that
continues beyond the MRCA into the distant past is of consider-
able interest on its own, not least because it links the genealogy
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(of a sample from a population) to the longer time scale of phylo-
genetic trees. The extended time horizon then shifts attention to
the asymptotic properties of the ancestral process. The stationary
type distribution on the ancestral linemaydiffer substantially from
the stationary type distribution in the population. This mirrors the
fact that the ancestral line consists of those individuals that are suc-
cessful in the long run; thus, its type distribution is expected to be
biased towards the favourable types.

When looking at the evolution of the system in (forward) time
[0, ∞), one may ask for properties of the so-called immortal line,
which is the line of descent of those individuals whose offspring
eventually takes over the entire population. In other words, the
immortal line restricted to any time interval [0, t] is the common
ancestral line of the population back from the far future. It then
makes sense to consider the type of the immortal line at time
0. To be specific, let us consider a Wright–Fisher diffusion with
two types of which one is more and one is less fit. The common
ancestor type (CAT) distribution at time 0, conditional on the type
frequencies (x, 1 − x), then has weights (h(x), 1 − h(x)), where
h(x) is the probability that the population ultimately consists of
offspring of an individual of the beneficial type, when startingwith
a frequency x of beneficial individuals at time 0.

The quantity h(x) can also be understood as the limiting
probability (as s → ∞) that the ancestor at time 0 of an individual
sampled from the population at the future time s is of the beneficial
type, given that the frequency of the beneficial type at time 0 is
x. Equivalently, h(x) is the limiting probability (as s → ∞) that
the ancestor at the past time −s of an individual sampled from
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the population at time 0 is of the beneficial type, given that the
frequency of the beneficial type at time −swas x.

Fearnhead (2002) computed the common ancestor type distri-
bution for time-stationary type frequencies, representing it in the
form

 1
0 (h(x), 1−h(x))π(dx) (whereπ isWright’s equilibriumdis-

tribution) and calculating a recursion for the coefficients of a series
representation of h(x). Later, h(x) has been represented in terms of
a boundary value problem (Taylor, 2007; Kluth et al., 2013), see
also Section 7.

In the case withoutmutations (in which h(x) coincides with the
classical fixation probability of the beneficial type starting from
frequency x), Mano (2009) and Pokalyuk and Pfaffelhuber (2013)
have represented h(x) in terms of the equilibrium ASG, making
use of a time reversal argument (see Section 2.2). However, the
generalisation to the case with mutation is anything but obvious.
One purpose of this article is to solve this problem. A key ingredient
will be a combination of the ASG with elements of the lookdown
construction, which also seems of interest in its own right.

The paper is organised as follows. In Section 2, we start by
briefly recapitulating the ASG (starting from the Moran model for
definiteness). We then recall the Fearnhead–Taylor representation
of h(x) and give its explanation in terms of the equilibrium ASG in
the case without mutations, inspired by Pokalyuk and Pfaffelhuber
(2013). In Section 3, we prepare the scene by ordering the lines of
the ASG in a specific way; in Section 4, we then represent the or-
dered ASG in terms of a fixed arrangement of levels, akin to a look-
down construction. In Section 5, a pruning procedure is described
that reduces the number of lines upon mutation. The stationary
number of lines in the resulting pruned LD–ASG will provide the
desired connection to the (conditional) common ancestor type dis-
tribution. Namely, the tail probabilities of the number of lines ap-
pear as the coefficients in the series representation. In Section 6,
the graphical approach will directly reveal various monotonicity
properties of the tail probabilities as functions of themodel param-
eters, which translate intomonotonicity properties of the common
ancestor type distribution. Section 7 is an add-on, whichmakes the
connection to Taylor’s boundary value problem for h(x) explicit;
Section 8 contains some concluding remarks.

2. Concepts and models

2.1. The Moran model and its diffusion limit

Let us consider a haploid population of fixed size N ∈ N in
which each individual is characterised by a type i ∈ S := {0, 1}.
An individual of type i may, at any instant in continuous time, do
either of two things: it may reproduce, which happens at rate 1 if
i = 1 and at rate 1+sN , sN ≥ 0, if i = 0; or itmaymutate to type j at
rate uNνj, uN ≥ 0, 0 ≤ νj ≤ 1, ν0 + ν1 = 1. If an individual repro-
duces, its single offspring inherits the parent’s type and replaces
a randomly chosen individual, maybe its own parent. Concerning
mutations, uN is the total mutation rate and νj the probability of
a mutation to type j. Note that the possibility of silent mutations
from type j to type j is included.

The Moran model has a well-known graphical illustration as
an interacting particle system (cf. Fig. 1). The individuals are
represented by horizontal line pieces, with forward time running
from left to right in the figure. Arrows indicate reproduction events
with the parent at its tail and the offspring at its head. For later
use, we decompose reproduction events into neutral and selective
ones. Neutral arrows appear at rate 1/N , selective arrows (those
with a star-shaped arrowhead in Fig. 1) at rate sN/N per ordered
pair of lines, irrespective of their types. The rates specified above
are obtained by the convention that neutral arrows may be used
by all individuals, whereas selective arrows may only be used by

Fig. 1. The Moran model with two-way mutation and selection. The types are
indicated for the initial population (left) and the final one (right). Crosses represent
mutations to type 1, circles mutations to type 0. Selective events are depicted as
arrows with star-shaped heads.

Fig. 2. Incoming branch (I), continuing branch (C), and descendant (D). The
ancestor is marked bold.

type-0 individuals and are ignored otherwise. Mutations to type 0
are marked by circles, mutations to type 1 by crosses.

The usual diffusion rescaling in population genetics is applied,
i.e. rates are rescaled such that limN→∞ NsN = σ and limN→∞ NuN
= θ , 0 ≤ σ , θ < ∞, and time is sped up by a factor of N . Let Xt
be the frequency of type-0 individuals at time t in this diffusion
limit. Then, the process (Xt)t∈R is a Wright–Fisher diffusion which
is characterised by the drift coefficient a(x) = (1− x)θν0 − xθν1 +

x(1 − x)σ and the diffusion coefficient b(x) = 2x(1 − x). The sta-
tionary density π is given by π(x) = C(1− x)θν1−1xθν0−1 exp(σ x),
where C is a normalising constant (cf. Durrett, 2008, Chapters 7, 8
or Ewens, 2004, Chapters 4, 5).

2.2. The ancestral selection graph

The ancestral selection graph was introduced by Krone and
Neuhauser (1997) and Neuhauser and Krone (1997) to construct
samples from a present population, together with their ancestries,
in the diffusion limit of the Moranmodel with mutation and selec-
tion. The basic idea is to understand selective arrows as unresolved
reproduction events backwards in time: the descendant has two
potential ancestors, the incoming branch (at the tail) and the contin-
uing branch (at the tip), see also Fig. 2. The incoming branch is the
ancestor if it is of type 0, otherwise the continuing one is ancestral.
For a hands-on exposition, see Wakeley (2009, Chapter 7.1).

The ASG is constructed by starting from the (as yet untyped)
sample and tracing back the lines of all potential ancestors. In
the finite graphical representation, a neutral arrow that joins two
potential ancestral lines appears at rate 2/N per currently extant
pair of potential ancestral lines, then giving rise to a coalescence
event, i.e. the two lines merge into a single one. In the same finite
setting, a selective arrow that emanates from outside the current
set of n potential ancestral lines and hits this set appears at rate
n(N − n)sN/N . This gives rise to a branching event, i.e., viewed
backwards in time, the line that is hit by the selective arrow splits
into an incoming and continuing branch as described above. Thus,
in the diffusion limit, since N − n ∼ N as N → ∞, the process
(Kr)r∈R, where Kr is the number of lines in the ASG at time r = −t ,
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