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a b s t r a c t

The standardmodel for the dynamics of a fragmented density-dependent population is built from several
local logistic models coupled by migrations. First introduced in the 1970s and used in innumerable
articles, this standard model applied to a two-patch situation has never been completely analysed. Here,
we complete this analysis and we delineate the conditions under which fragmentation associated to
dispersal is either beneficial or detrimental to total population abundance. Therefore, this is a contribution
to the SLOSS question. Importantly, we also show that, depending on the underlying mechanism, there is
no unique way to generalize the logistic model to a patchy situation. In many cases, the standard model
is not the correct generalization. We analyse several alternative models and compare their predictions.
Finally, we emphasize the shortcomings of the logistic model when written in the r-K parameterization
and we explain why Verhulst’s original polynomial expression is to be preferred.

© 2015 Published by Elsevier Inc.

1. Introduction

The theoretical literature on spatially-distributed population
dynamics is huge and we will make no attempt to review it. In-
stead, we will focus on some problems with the basic models that
are used as the building blocks of this body of theory. Indeed,
we have found that even the simplest and most ancient model
still contained unresolved aspects and that unsupported general-
izations were common. More precisely, we will explore the de-
tails of various ways to generalize the logistic model to a two-
patch situation, i.e., the simplest way to describe the dynamics of a
spatially-distributed, density-dependent population. The standard
model commonly used in this situation has never been completely
analysed. We will complete this analysis and we will delineate the
conditions under which fragmentation can either be beneficial or
detrimental to total population abundance. More importantly, we
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will show that this standard multi-patch logistic model is, in many
cases, an incorrect description of the dynamics of a fragmented
density-dependent population.

Assume that some population N follows the logistic model
when growing in a uniform environment:

dN
dt

= rN

1 −

N
K


. (1)

This model assumes perfect mixing of the population. For mod-
elling the dynamics of the same species in a patchy environment,
it is widely accepted to assume that each subpopulation in each
patch follows a local logistic law and that the various patches are
coupled by migrations. Taking the case of two patches as a sim-
ple example, the following model describes logistic growth in two
patches linked symmetrically by migration:

dN1

dt
= r1N1


1 −

N1

K1


+ β(N2 − N1),

dN2

dt
= r2N2


1 −

N2

K2


+ β(N1 − N2),

(2)

where Ni is the population abundance in patch i and βNi is the
emigration flow from patch i to the other patch (β ≥ 0). The
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parameters ri and Ki are respectively the intrinsic growth rate and
the carrying capacity in patch i. This model was first studied by
Freedman and Waltman (1977), later by DeAngelis et al. (1979)
and Holt (1985), and a graphical presentation was given by Hanski
(1999, pp. 43–46) in his reference book on metapopulations. More
recently, DeAngelis and Zhang (2014) have brought new develop-
ments.

We denote by N∗

1 and N∗

2 the population abundances at equilib-
rium. With no loss of generality, we assume that patch 1 has the
lower carrying capacity (i.e., K1 ≤ K2). In isolation (β = 0), each
population equilibrates at its local carrying capacity: N∗

i = Ki.
Awell-known result is that, in the presence of dispersal (β > 0),

the total equilibrium population, N∗

T = N∗

1 + N∗

2 , is generally
different from the sumof the carrying capacities K1+K2. Freedman
andWaltman (1977) have shown that, in the case of perfectmixing
(β → ∞), both patch populations tend to equal values and that the
total equilibrium population tends to:

N∗

T = K1 + K2

+ (K1 − K2)
r1K2 − r2K1

r1K2 + r2K1
, in the limit β → ∞. (3)

(Note that this expression contained typos in Freedman and
Waltman, 1977, their equation 3.3 that were only partially
corrected by Holt, 1985.)

Depending on the sign of the numerator present in Eq. (3),
dispersal can either be beneficial or detrimental with respect to
the total carrying capacity. Thus, if r1K2 < r2K1 (with K1 < K2), we
will have

N∗

T > K1 + K2, if β is sufficiently large. (4)

This spectacular result, somewhat paradoxical, has beenwidely
discussed and has led to speculations about the general virtues
of patchiness and dispersal, for example in the context of the
conservation ecology question of whether a single large refuge is
better orworse than several small ones (the SLOSS debate; see, e.g.,
Hanski, 1999).

Freedman and Waltman (1977) only contrasted the situations
of perfect isolation andperfectmixing; they did not study the effect
of intermediate values of the dispersal parameterβ . This effectwas
studied in the recent paper of DeAngelis and Zhang (2014), but only
in the special case r1/K1 = r2/K2.

In the present paper, we will bring two contributions. Firstly, in
Section 2 and Appendix A, we will present the analysis of model
(2) in the full parameter space. We will show how the effects of
dispersal β and of the ri/Ki ratios combine and we will determine
the exact conditions underwhichN∗

T > K1+K2 (see Proposition 2).
These results have importance in those cases in which model
(2) is a relevant description of logistic growth in a patchy
environment.

Our second contribution will be to question the general validity
of system (2) for modelling a patchy logistic population, using
several simple examples. The logistic model is often justified on
phenomenological grounds. However, it can also be derived from
mechanistic considerations. Depending on the mechanism being
considered, we will show that the correct generalization to a
patchy situation is not necessarily represented by model (2) and
that the equilibrium total population can be different from that
predicted by this model. More precisely, we will show in Section 3
(with Appendix B) and in Section 4 (with Appendix C) that the
patch coupling (2) is incorrect inmodels inwhich logistic growth is
due to resource exploitation, while it is correct in amodel in which
logistic growth arises from agonistic inter-individual interactions
(see Section 5).

Fig. 1. Qualitative properties of model (2). In J0 , patchiness has a beneficial effect
on total carrying capacity. This effect is detrimental in J2 . In J1 , the effect is
beneficial for lower values of the migration coefficient β and detrimental for the
higher values. Note that, because of the assumption K1 ≤ K2 , the two oblique lines
cannot be reversed. See text in Section 2 for additional explanations.

2. Theoretical analysis of the standard two-patch logisticmodel

In this section, we summarize some of the properties of the
standard model (2). Formal proofs are given in the Mathematical
Appendix A.

As already mentioned in the Introduction, with no dispersal
(β = 0), each patch equilibrates at its own carrying capacity and
the total equilibrium number of individuals is just the sum of the
carrying capacities:N∗

T = K1+K2. This remains truewith dispersal
(β > 0) if the two carrying capacities are identical. However, if
the carrying capacities are not identical (K1 < K2), the equilibrium
densities are such that

K1 < N∗

1 < N∗

2 < K2, (5)

meaning that, in general, N∗

T ≠ K1 + K2 (see Proposition 2 in
Appendix A).

In particular, the total equilibrium population N∗

T can be greater
than the sum of the carrying capacities. In the Introduction, we
mentioned Freedman and Waltman’s result in the case of perfect
mixing (β → ∞) (Eqs. (3)–(4)). This can also occur with imperfect
mixing as, for example, if r1/K1 < r2/K2 (with K1 < K2). In this
case, as shown in Appendix A,

N∗

T > K1 + K2, as soon as β > 0. (6)

Note that, if migration is asymmetric (β1 ≠ β2), then it is possible
to have N∗

T > K1 + K2 even in the case K1 = K2 (Poggiale et al.,
2005).

Appendix A gives the full mathematical analysis of the equilib-
rium properties of the coupled logistic model (2). The main quali-
tative results are summarized by Fig. 1. Depending on the inequal-
ities between r1 and r2, and between r1/K1 and r2/K2, three differ-
ent domains must be considered in the parameter space r1 × r2.
We define J0 by the condition r2/K2 ≥ r1/K1, J2 by the condition
r2 ≤ r1, and J1 by the condition r2/K2 < r1/K1 and r2 > r1.

The effect of patchiness and migration is different in the three
domains. In J0, this effect is beneficial: N∗

T is always greater than
K1 + K2. In J2, the opposite is true: patchiness is detrimental
since N∗

T is always smaller than K1 + K2. In J1, the effect of
patchiness depends on the migration rate: it is beneficial at lower
values of the migration coefficient β while this effect becomes
detrimental at high values. This is illustrated by Fig. 2, in which
the total equilibrium abundance N∗

T is plotted as a function of the
migration rate β . Depending on the choice of parameter values
(given in Table 1), this figure shows three different example
patterns, belonging respectively to J0, J2, and J1.

Fig. 2(a) is an example response in J0: as soon as there is some
migration (β > 0), the global carrying capacity N∗

T is greater than
K1 +K2. In Fig. 2(b), we show an example response in J2: the total
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