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a b s t r a c t

In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the
influence of mutation, directional selection and drift. He derived the equilibrium distribution of the
allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of
directional selection. The equilibrium distribution can be used for inference of these parameters with
genome-wide datasets of ‘‘site frequency spectra’’ (SFS). Assuming that the scaled mutation rate is low,
Wright’s model can be approximated by a boundary-mutation model, where mutations are introduced
into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the
boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the
polymorphic region is determined by random drift and directional selection, but not by the mutation
parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in
the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic andmonomorphic
preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum
likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to
simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mutation creates the genome-wide sequence variation upon
which other population genetic forces act. DNA sequence data, in
principle, offer the opportunity to infer important population ge-
netic parameters—effective population sizes, mutation rates, and
selection coefficients. Together with weak directional selection,
mutation bias is thought to affect the nucleotide base composi-
tion, such that different genomic regionsmay varywithin a species,
e.g. between classes of sites such as short introns and fourfold de-
generate sites, and among closely related species (e.g. Singh et al.,
2005, 2007, 2009; Parsch et al., 2010; Clemente and Vogl, 2012b,a).
The mutation parameters are most easily inferred from data of pu-
tatively neutral or nearly-neutral sequences. The nucleotide base
composition is also influenced by other population genetic forces,
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e.g. the recombination rate, and features, e.g. X- or autosomal link-
age. Thus improvedmethods of inference ofmutation and selection
parameters may also help understand these forces and features.

Typically, inference methods rely on the scaled mutation rates
being so small that mutations can be assumed to be irreversible
and always occur at new sites; usually these methods also require
inference of ancestral states (but see RoyChoudhury and Wakeley,
2010; Vogl and Clemente, 2012). Here, we relax this assumption
somewhat using a reversible mutation model. To do this, we
rely on theory developed by Wright (1931). His formula for
mutation–selection–drift equilibrium

Pr(x|α, θ, γ ) =
eγ xxαθ−1(1 − x)(1−α)θ−1 1

0 eγ xxαθ−1(1 − x)(1−α)θ−1 dx
(1)

has stood the test of time (here x is the population proportion of the
preferred allele, γ the scaled selection coefficient, α the mutation
bias, and θ = µN the scaled mutation rate; in the following, we
will often setβ = 1−α). If γ ≪ 1mutation dominates (the neutral
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region), such that a beta describes the equilibrium distribution

Pr(x|α, θ) =
Γ (θ)

Γ (αθ)Γ (βθ)
xαθ−1(1 − x)βθ−1. (2)

If γ > 4 selection dominates and nearly no unpreferred alleles
are found in the population (Ohta and Gillespie, 1996). The
intermediate case, where γ ≈ 1, corresponds to the ‘‘nearly-
neutral region’’ (Ohta, 1979; Ohta and Gillespie, 1996). In this
parameter range, directional selection opposingmutation biasmay
increase equilibrium variability (McVean and Charlesworth, 1999).

Paradigmatic datasets for application of the biallelic muta-
tion–selection–drift model come from ‘‘site frequency spectra’’
(SFS) of short intron sequences and fourfold degenerate sites in
Drosophila species of themelanogaster subgroup. Sites between po-
sitions 8 and 30 in short introns are assumed to have no function
except as spacers and are thus considered to evolve neutrally, or
very nearly so (Parsch et al., 2010). For the theory to be applicable
to Drosophila data, A and T nucleotides can be grouped together
and contrasted with C and G nucleotides. This binary classification
is justified by the assumption that mutation is not strand-specific,
but is often either AT or CG biased, while selection or biased gene
conversion may favor CG over AT. For a sample of M haplotypes
and a specific site class, data can be represented as a site frequency
spectrum (SFS) by defining Ly to be the number of genomic sites
that have y CG bases and (M − y) AT bases. Obviously, 0 ≤ y ≤ M
and the total number of sites is L =

M
y=0 Ly.

Neither the general formula (1) nor the beta distribution
(2) have often been used for inference of population genetic
parameters, in spite of being known for more than 80 years and
their importance in population genetics. Rather, inference has
generally been based on approaches that explicitly or implicitly
assume small scaledmutation rates θ .With the infinite sitesmodel,
infinitely many sites may be hit by mutation at a finite rate,
such that each site is hit only once (Kimura, 1964; Kimura and
Ohta, 1969; Watterson, 1975). Furthermore, it is usually assumed
that the ancestral state is known via outgroup information,
i.e. alleles can be polarized into ancestral and derived, which
is only possible if mutations are rare enough to make multiple
hits of the same site unlikely. The well-known Ewens–Watterson
estimator of scaledmutation rate (Ewens, 1974;Watterson, 1975),
θ̂w = Lp/(L

M−1
y=1 1/y), where the number of polymorphic

sites Lp =
M−1

y=1 Ly, is based on the infinite sites model.
The Ewens–Watterson estimator is generally unbiased; if sites
are unlinked, it is also the maximum likelihood estimator of
θ . If assumptions are met, θ̂w corresponds to the ‘‘expected
heterozygosity’’, i.e. the proportion of polymorphism in a sample
of sizeM = 2.

Similar to the infinite sites model, applications of the Poisson
Random Field (PRF) model to population genetics explicitly or
implicitly assume small scaled mutation rates. Often, theory is
based on irreversible mutation models and applied to sequence
variation, which requires knowledge of ancestral states and an
unlimited and unvarying supply of sites (e.g. Sawyer and Hartl,
1992; Bustamante et al., 2001, 2003; Williamson et al., 2004).
Some of these models allow for a distribution of selection
coefficients or arbitrary dominance (Bustamante et al., 2003;
Williamson et al., 2004). As far as we are aware, among the
theory based on the PRF model only RoyChoudhury and Wakeley
(2010) do not assume outgroup information, but rather start
from a Taylor series expansion in θ of distributions (1) and
(2). Nevertheless, the estimator of the scaled mutation rate that
RoyChoudhury and Wakeley (2010) derive is essentially identical
to the Ewens–Watterson estimator. Starting from a Moran model,
Vogl and Clemente (2012) derive a similar equation also for the
case with directional selection.

In Drosophila melanogaster and Drosophila simulans, the ratio
(AT):(CG) in short introns is about 2:1. In the same species, this
ratio reverses to about 1:2 in fourfold degenerate sites. Since
the mutation process is unlikely to differ between the two site
classes, directional selection favoring CG nucleotides in fourfold
degenerate sites is probably the force behind this observation
(Hershberg and Petrov, 2008; Clemente and Vogl, 2012b,a). With
low effective mutation rates, such that only a single mutation
segregates, the ratio of the unpreferred to the preferred allele
is about β : αeγ ; a result that can already be derived from
Wright (1931). Assuming no directional selection in short introns,
the scaled selection coefficient favoring CG over AT in fourfold
degenerate sites is therefore about γ ≈ log(4) = 1.39. Obviously
γ is of the order one in this case, i.e. in the nearly-neutral region.
Furthermore, the strength of the directional selective force and
of the mutation bias are balanced in a way that short intron and
fourfold degenerate sites are about equally polymorphic (Parsch
et al., 2010; Clemente and Vogl, 2012b,a). Even more importantly,
the amount of polymorphism is so low (θ̂ ≈ 0.02) that the
assumption of low scaled θ is met, according to simulations in Vogl
and Clemente (2012).

Herein, we will derive the sampling distribution (likelihood)
of a biallelic locus in mutation–selection–drift equilibrium in
the nearly-neutral range assuming low scaled mutation rates θ .
For most organisms and datasets (e.g. Drosophila species and
mammals), this restriction does not seem to be a problem.
Furthermore, the assumption of low scaled mutation rates allows
us to draw parallels to earlier methods of inference of population
genetic parameters, which are based on models that explicitly
or implicitly assume low scaled mutation rates θ . To derive this
likelihood, we will put forward a boundary-mutation model. For
γ = 0 the sampling distribution of the boundary-mutation
model is identical to that of a Taylor series of the general model
up to first order in θ . For γ ≠ 0, it provides computationally
feasible maximum likelihood estimators of all three parameters,
α, θ , and γ . A set of functions used for parameter inference was
implemented in the ‘‘R’’-software (R Core Team, 2014) and made
available for further usage. We apply the inference method to
simulated datasets and to data from short introns and fourfold
degenerate sites in a population sample of Drosophila simulans
from Madagascar (Rogers et al., 2014).

1.1. Assumptions

The following is assumed throughout:

Assumption 1. Allele frequency data of biallelic loci (sites), i.e. SFS
data, are available from L < ∞ loci, indexed by 1 ≤ l ≤ L.

Assumption 2. The allelic proportions xl of the preferred allele at
each of the L sites are independently and identically drawn from a
mutation–selection–drift equilibrium solution.

Assumption 3. The likelihood of the allelic frequencies yl in the
sample is binomial with parameters xl and identical sample size
M .

Note that dropping the assumption of constant M for all L only
increases the complexity of notation.

2. Inference with a general mutation–selection–drift model

This section is mainly a review of inference with a general
biallelic mutation–selection–drift model in equilibrium. So far,
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