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a b s t r a c t

The rapid development of sequencing technologies represents new opportunities for population genetics
research. It is expected that genomic data will increase our ability to reconstruct the history of
populations. While this increase in genetic information will likely help biologists and anthropologists
to reconstruct the demographic history of populations, it also represents new challenges. Recent work
has shown that structured populations generate signals of population size change. As a consequence it is
often difficult to determinewhether demographic events such as expansions or contractions (bottlenecks)
inferred from genetic data are real or due to the fact that populations are structured in nature. Given that
few inferential methods allow us to account for that structure, and that genomic data will necessarily
increase the precision of parameter estimates, it is important to develop new approaches. In the present
study we analyze two demographic models. The first is a model of instantaneous population size
change whereas the second is the classical symmetric island model. We (i) re-derive the distribution
of coalescence times under the two models for a sample of size two, (ii) use a maximum likelihood
approach to estimate the parameters of these models (iii) validate this estimation procedure under a
wide array of parameter combinations, (iv) implement and validate a model rejection procedure by using
a Kolmogorov–Smirnov test, and a model choice procedure based on the AIC, and (v) derive the explicit
distribution for the number of differences between two non-recombining sequences. Altogether we show
that it is possible to estimate parameters under several models and perform efficient model choice using
genetic data from a single diploid individual.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The sheer amount of genomic data that is becoming available
for many organisms with the rapid development of sequencing
technologies represents new opportunities for population genet-
ics research. It is hoped that genomic data will increase our abil-
ity to reconstruct the history of populations (Li and Durbin, 2011;
Schiffels and Durbin, 2014) and detect, identify and quantify se-
lection (Vitti et al., 2013). While this increase in genetic informa-
tion will likely help biologists and anthropologists to reconstruct

∗ Correspondence to: CNRS, Université Paul Sabatier, Laboratoire Evolution &
Diversité Biologique, Bâtiment 4R1, 118 route de Narbonne, 31062 Toulouse cedex
9, France.

E-mail address: lounes.chikhi@univ-tlse3.fr (L. Chikhi).

the demographic history of populations, it also exposes old chal-
lenges in the field of population genetics. In particular, it becomes
increasingly necessary to understand how genetic data observed
in present-day populations are influenced by a variety of factors
such as population size changes, population structure and gene
flow (Nielsen and Beaumont, 2009). Indeed, the use of genomic
data does not necessarily lead to an improvement of statistical in-
ference. If the model assumed to make statistical inference is fun-
damentally mis-specified, then increasing the amount of data will
lead to increased precision for perhaps misleading if not meaning-
less parameters andwill not reveal new insights (Nielsen andBeau-
mont, 2009; Chikhi et al., 2010; Heller et al., 2013).

For instance, several recent studies have shown that the
genealogy of genes sampled from a deme in an island model is
similar to that of genes sampled from a non structured isolated
population submitted to a demographic bottleneck (Chikhi et al.,
2010; Heller et al., 2013). As a consequence, using a model of
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Fig. 1. Demographic models. (a) Single step population size change (SSPSC) model. The x-axis represents t , the time to the past in units of generations scaled by the number
of genes. At time t = T , (going from the present to the past) the population size changes instantaneously from N0 to N1 by a factor α. The y-axis represents the population
sizes in units of N0 (i.e. N(t)/N(0)). (b) Structured symmetrical island (StSI) model for n = 5 islands. Each circle represents a deme of size N . All demes are connected to
each other by symmetrical gene flow, represented by the edges. In this example the total number of genes is 5N . Note that these two models are scaled such that N0 in the
SSPSC model corresponds to N in the StSI model. This implicit scaling is natural since by setting the number of islands to n = 1, the two models will be identical for α = 1
too, leading to N0 = N .

population size change for a spatially structured population may
falsely lead to the inference of major population size changes
(Nielsen and Beaumont, 2009; Städler et al., 2009; Chikhi et al.,
2010; Heller et al., 2013; Paz-Vinas et al., 2013). Conversely,
assuming a structured model to estimate rates of gene flow when
a population has been submitted to a population size change may
also generate misleading conclusions, even though the latter case
has been much less documented. More generally, previous studies
have shown that spatial processes can mimic selection (Currat
et al., 2006), population size changes (Leblois et al., 2006a; Chikhi
et al., 2010;Heller et al., 2013) or that changes in gene flowpatterns
can mimic changes in population size (Wakeley, 1999; Broquet
et al., 2010). The fact that such dissimilar processes can generate
similar coalescent trees poses exciting challenges (Nielsen and
Beaumont, 2009). One key issue here is that it may be crucial to
identify the kind ofmodel (or family ofmodels) that should be used
before estimating and interpreting parameters.

One solution to this problem is to identify the ‘‘best’’ model
among a set of competing models. This research program has been
facilitated by the development of approximate Bayesian computa-
tion (ABC) methods (Beaumont et al., 2002; Cornuet et al., 2008;
Beaumont, 2010). For instance, using an ABC approach, Peter et al.
(2010) showed that data sets produced under population struc-
ture can be discriminated from those produced under a popula-
tion size change by using up to two hundred microsatellite loci
genotyped for 25 individuals. In some cases, relatively few loci
may be sufficient to identify the most likely model (Sousa et al.,
2012; Peter et al., 2010), but in others, tens or hundreds of loci may
be necessary (Peter et al., 2010). ABC approaches are thus poten-
tially very powerful but they are often used as black boxes which
provide results on a specific problem but limited understanding
on the properties of genetic data in general. Also, since most ABC
methods use summary statistics, which are rarely sufficient they
typically lose part of the information present in the genetic data
compared to likelihood-based methods (Beaumont, 2010). Analyt-
ical approaches on the contrary are often limited to very simple
models and do not exhibit the flexibility of ABC methods but they
allow us to improve our understanding of genetic data. For in-
stance, the theory developed for the coalescent under structured
models is crucial to understand why population structure mim-
ics population size changes. Below, we use intuitive and analytical
results to explain exactly that and identify connections between

models and parameters that would typically be missed with ABC
approaches.

In the present study we are interested in describing the
properties of the coalescent under two demographic models and
in devising a new statistical test and new parameters estimation
procedures. The two models were a model of population size
change and a model of population structure. More specifically we
re-derived the full distribution of T2, the time to the most recent
common ancestor for a sample of size two for a model of sudden
population size change and for the n-islandmodel. We then used a
maximum likelihood-like approach to estimate the parameters of
interest for eachmodel (timing and ratio of population size change
for the former and number of migrants and number of islands for
the latter). We developed a statistical test that identifies data sets
generated under the two models and an AIC (Akaike Information
Criterion)model choice procedure for the caseswhere bothmodels
were rejected. We also tested the robustness of our model choice
approach by simulating data under four other models, two models
of population size change and two stepping-stone models. Finally,
we show how these results may apply to genomic data such as
SNPs and how they could be extended to real data sets (for which
T2 is not usually known) and for other demographic models. In
particular we discuss how our results are relevant in the context
of the PSMC (Pairwise SequentiallyMarkovian Coalescent)method
(Li and Durbin, 2011), which has been now extensively used on
genomic data and also uses a sample size of two.

2. Methods

2.1. Demographic models

2.1.1. Population size change
We consider a simple model of population size change, where

N(t) represents the population size (N , in units of genes or haploid
genomes) as a function of time (t) expressed in generations scaled
by N , the population size, and where t = 0 is the present, and
positive values represent the past (Fig. 1(a)). More specifically
we assume a sudden change in population size at time T in the
past, where N changes instantaneously by a factor α. This can be
summarized as N(t) = N(0) = N0 for t ∈ [0, T [, N(t) =

N(T ) = αN0 for t ∈ [T , +∞[. If α > 1 the population went
through a bottleneck (Fig. 1) whereas if α < 1 it expanded. Since
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