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h i g h l i g h t s

• We present deterministic and stochastic models of species invading new territory.
• Fat-tailed dispersal kernels lead to accelerating spread in the deterministic case.
• Only Lévy flight dispersal causes acceleration in our stochastic model.
• Stochastic and mean-field results can be very different given long-range dispersal.
• In such circumstances, mean-field results should be applied with caution.
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a b s t r a c t

Rare long distance dispersal events are thought to have a disproportionate impact on the spread of
invasive species. Modelling using integrodifference equations suggests that, when long distance contacts
are represented by a fat-tailed dispersal kernel, an accelerating wave of advance can ensue. Invasions
spreading in this manner could have particularly dramatic effects. Recently, various authors have
suggested that demographic stochasticity disrupts wave acceleration. Integrodifference models have
been widely used in movement ecology, and as such a clearer understanding of stochastic effects is
needed. Here, we present a stochastic non-linear one-dimensional lattice model in which demographic
stochasticity and the dispersal regime can be systematically varied. Extensive simulations show that
stochasticity has a profound effect on model behaviour, and usually breaks acceleration for fat-tailed
kernels. Exceptions are seen for some power law kernels, K(l) ∝ |l|−β with β < 3, for which acceleration
persists despite stochasticity. Such kernels lack a second moment and are important in ‘accelerating’
phenomena such as Lévy flights. Furthermore, for long-range kernels the approach to the continuum
limit behaviour as stochasticity is reduced is generally slow. Given that real-world populations are finite,
stochastic models may give better predictive power when long-range dispersal is important. Insights
from mean-field models such as integrodifference equations should be applied with caution in such
circumstances.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The manner in which alleles, species and diseases spread over
space is of fundamental interest to population biologists. These
processes have an important impact on many evolutionary and
ecological systems, and are particularly relevant in the modern
world, where increasing global trade (Hulme, 2009) and highly in-
terconnected transport systems (Guimerà et al., 2005) change the
dynamics of disease and species dispersal. For example, interna-
tional air travel has been suggested as a major driver of the spread
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of disease, including the 2009 H1N1 influenza A swine flu virus
pandemic (Khan et al., 2009). Anticipating species invasions, and
identifying how they might progress in such conditions, is an im-
mediate and relevant problem.

Various models have been constructed in order to theoretically
explore the dynamics of spreading populations. These guide
our predictions about future genetic, demographic or disease
prevalence trends, and our understanding of the history implied
by current patterns. A core feature of models is whether they
explicitly incorporate stochasticity. Traditional approaches tend
to use deterministic approximations of the underlying stochastic
process. Here, there is an assumption that over many repeats of an
event with a random element the stochasticity will average out,
and can be ignored without invalidating results. Such models can
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often be analysed mathematically, but are sometimes sufficiently
complex that a computational solution is necessary.

Stochastic models are usually more computationally intensive
and less analytically transparent, but accept that explicitly includ-
ing the randomness of events is important. It is often unclearwhich
approach is preferable. In the specific case of species dispersal, a
finite population of organisms that move and reproduce with a de-
gree of independence implies a finite number of dispersal events.
Stochasticity at small scales can have a significant impact on larger
scale behaviour, and it is possible that averaging these events has
a qualitative impact on model results.

One feature of population spread that is of particular practical
interest is the expected rate of invasion. Deterministic equations
predict that under many conditions population expansion occurs
through a wave of advance travelling at constant velocity (Wein-
berger, 1982). In certain cases, however, where there is a rela-
tively high frequency of long-distance dispersal events, this wave
will accelerate indefinitely (Kot et al., 1996). The integrodifference
model that retrieves this latter result has been widely applied in
modelling species dispersal (Veit and Lewis, 1996; Neubert and
Caswell, 2000; Takasu et al., 2000; Lockwood et al., 2002; Schofield,
2002; Krkošek et al., 2007; Dewhirst and Lutscher, 2009). However,
the approach is deterministic, and it is not clear that the underly-
ing stochasticity of dispersal can be ignored without causing in-
accuracies. The impact of randomness on the accelerating wave of
advance will therefore be the principal subject of this paper. We
explore this by considering a range of stochastic models and their
mean-field deterministic approximations, inwhichmany dispersal
events are described as a single average process.
Fisher–Kolmogorov and its limitations

Classical modelling of population spread has taken the form
of reaction–diffusion equations. Here, a diffusion approximation
is used to model the underlying stochastic dispersal and repro-
duction processes, which occur concurrently and independently
of one another. This is a macroscopic approximation, obtained
from the stochastic description by truncating in space or time
to some finite order (Méndez et al., 2014). The paradigm is the
Fisher–Kolmogorov equation (Fisher, 1937; Kolmogorov et al.,
1937; Skellam, 1951):
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K


+ D∇
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where n is population density at time t, α is the maximum growth
rate, K is the carrying capacity (in some suitable units) and D is
the diffusion constant. The equation is continuous in space and
time and expresses the combination of logistic growth and Fickian
diffusion. The diffusion constant, or diffusivity, describes themean
square distance over which a particle diffuses per unit time given a
gradient of one unit, and may be expressed in dimensions L2T−1. A
higher diffusion constant implies that the flow of organisms from
full to empty space is easier and thus more rapid.

The use of a single parameter D to represent many possible
dispersal regimes follows from arguments based on the central
limit theorem (Bouchaud and Georges, 1990). It is justified by the
relationship between Fickian diffusion and the stochastic process
underlying it, Brownian motion. We can describe this process
mathematically as a random walk.

A basic random walk is a stochastic system in which the
position, x, of a particle is iteratively updated by its jump distance,
drawn from a given probability distribution. This probability
distribution describes the probability of dispersal over a distance
l in a time interval, and is known as the dispersal kernel, K(l). If
we run many random walks with a given starting position, the
distribution of the particles will spread out over time. Supposing
a symmetric dispersal process, the mean position remains close to
zero, but the diffusivity can be captured by the deviations around

this mean. For Brownianmotion, and indeedmore general random
walks,

⟨x(t)2⟩ = 2Dt, (2)

with the constant of proportionality defining the diffusivity. The
central limit theorem prescribes that the distribution function of
long-time positions is Gaussian so long as the same kernel applies
to all particles, there are no long-range correlations in jump-
distance, and the kernel has a finite first and second moment. D
is related to the variance of the kernel by

D =
1
2


+∞

−∞

l2K(l)dl. (3)

When the variance is unbounded, D is similarly not well defined, a
point we return to shortly.

An initially isolated population that behaves according to the
Fisher–Kolmogorov equation spreads out over time, creating a
‘wave of advance’, while maintaining a logistically determined
level of occupation behind the travelling front. Themodel has been
subject to much mathematical investigation, and a range of veloc-
ities can be sustained. However, under suitable initial conditions
(Kolmogorov et al., 1937), including those most relevant to biolog-
ical invasions, thewave speed (after transient acceleration) asymp-
totically approaches

c = 2
√

αD. (4)

For c to be asymptotically constant both D and α must exist and be
asymptotically constant.

Laying aside model-specific issues such as environmental het-
erogeneity, advection, and qualities of population growth such as
Allee effects, there are two general concerns about the application
of the Fisher–Kolmogorov equation. Firstly, long distance disper-
sal may complicate the diffusion term. Secondly, stochasticity may
invalidate results obtained from averaged processes. We deal with
these points in turn.
Long-distance dispersal through integrodifference models

Standard theory suggests the diffusivity D can capture a wide
range of stochastic dispersal processes through the relationship in
Eq. (2). In the context of population spread, a naïve assumption
of a normally distributed dispersal kernel would seem reasonable.
However, many species appear not to follow this dispersal pattern,
with dispersal better represented by a ‘fat-tailed’ kernel. These
kernels involve an excess probability of dispersal at longer
distances; specifically, the tail of the dispersal kernel decays more
slowly than an exponential distribution. Such dispersal regimes
have been observed in fungal spores (Brown andHovmøller, 2002),
plant seeds (Bullock and Clark, 2000), and in mammals and birds
(Sutherland et al., 2000). Under these conditions, it becomes less
clear that D will capture the dispersal process faithfully, and there
is a strong argument for explicitly incorporating the dispersal
kernel itself into a model.

As we have noted, some fat-tailed kernels decay so slowly that
the variance or other moments are not well defined. Specifically,
when the tail of a kernel decays as a power law, K(l) ∝ l−β

as l → ∞, the (β − 1)nth and greater moments are not finite.
This phenomenon is due to the dominant role that rare large
values have on the characteristics of the distribution, and is useful
for incorporating a relatively high probability of extremely long-
range events into the dispersal regime. If β ≤ 3, we can predict
dispersal behaviour by considering a particular class of random
walks, known as Lévy flights, for which the second moment is
undefined (Lévy, 1937; Hughes et al., 1981).

When the variance is unbounded the effective diffusivity in-
creases with time, termed superdiffusion. Given the role of D in
the Fisher–Kolmogorov equation,wemight expect these kernels to
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