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a b s t r a c t

Taylor’s power law of fluctuation scaling (TL) states that for population density, population abundance,
biomass density, biomass abundance, cell mass, protein copy number, or any other nonnegative-valued
random variable in which the mean and the variance are positive, variance = a(mean)b, a > 0, or equiv-
alently log variance = log a+b× logmean. Many empirical examples and practical applications of TL are
known, but understanding of TL’s origins and interpretations remains incomplete. We show here that, as
time becomes large, TL arises frommultiplicative population growth in which successive random factors
are chosen by aMarkov chain.We give exact formulas for a and b in terms of theMarkov transitionmatrix
and the values of the successive multiplicative factors. In this model, the mean and variance asymptoti-
cally increase exponentially if and only if b > 2 and asymptotically decrease exponentially if and only if
b < 2.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fluctuation scaling is a name popular among physicists for a
lawful relationship between the mean and variance of any ran-
dom variable when the mean and variance are functions of some
parameter. Among statisticians, such a relationship is often called
a variance function. In population biology and ecology, Taylor’s
power law of fluctuation scaling (Taylor, 1961, 1984) states that
when the mean and the variance exist and are positive functions
of some parameter, they are related by a power law: variance =

a(mean)b, a > 0, or equivalently log variance = log a + b × log
mean.

Taylor’s law (TL) began with empirical observations of insect
population densities and was verified in hundreds of biological
species (Eisler et al., 2008) including, recently, bacteria (Ramsayer
et al., 2011; Kaltz et al., 2012), trees (Cohen et al., 2012, 2013a),
and humans (Cohen et al., 2013b). TL is one of the most widely
verified empirical relationships in ecology. TL has also been
confirmed for cell populations within specific organs (Azevedo
and Leroi, 2001), stem cell populations (Klein and Simons, 2011),
counts of single nucleotide polymorphisms and genes (Kendal
and Jørgensen, 2011), cases of measles and whooping cough
(Keeling and Grenfell, 1999), the mass of single-celled organisms
of different species (Giometto et al., 2013), and in diverse other
fields (for additional references, see review by Eisler et al., 2008),
including cancermetastases, single nucleotide polymorphisms and
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genes on chromosomes, and non-biological measurements such
as precipitation, packet switching on the Internet, stock market
trading, and number theory. TL has practical applications in the
design of sampling plans for the control of insect pests (soybeans:
Kogan et al., 1974, Bechinski and Pedigo, 1981; cotton: Wilson
et al., 1989; glasshouse roses: Park and Cho, 2004).

There is little consensus aboutwhy TL is sowidely observed and
how its estimated parameters should be interpreted. The theoret-
ical analysis of probability distributions in which the variance is
a power-law function of the mean preceded TL (Tweedie, 1946,
1947) (in other words, Taylor did not invent Taylor’s law) and TL
has beenmuch studied theoreticallywith orwithout recognition of
its empirical roots in ecology (e.g., Anderson et al., 1982, Tweedie,
1984, Perry and Taylor, 1985, Gillis et al., 1986, Jørgensen, 1987,
Kemp, 1987, Perry, 1988, Lepš, 1993, Jørgensen, 1997, Keeling,
2000, Azevedo and Leroi, 2001, Kilpatrick and Ives, 2003, Kendal,
2004, Ballantyne and Kerkhoff, 2007, Eisler et al., 2008, Engen et al.,
2008, Kendal and Jørgensen, 2011, Cohen et al., 2013a). Davidian
and Carroll (1987) andWang and Zhao (2007) emphasized the im-
portance of modeling correctly how the variance is related to the
mean if one desires statistical efficiency in estimating the mean.
They consideredmultiple variance functions including TL. But they
did not identify a power-law variance function with TL or discuss
models that might explain the origin of these variance functions.

Cohen et al. (2013a) showed that the Lewontin and Cohen
(1969) (no relation to the present author) stochastic multiplicative
population model (a geometric random walk with independently
and identically distributed [i.i.d.] multiplicative increments) im-
plies TL. Cohen et al. (2013a) calculated log a and b explicitly. Here
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we consider a more general model in which the factors that multi-
ply the population density at each time step are history-dependent,
not independent as in the Lewontin–Cohen model. We show that
a multiplicative model of change in a Markovian environment
leads to TL in the limit of large time, and we calculate log a and b
explicitly.

2. Taylor’s law

Let a family of nonnegative random variables N(t) be param-
eterized by t ∈ Θ , where Θ is an index set. Assume that, for all
t ∈ Θ , the mean E (N(t)) and the variance Var (N(t)) are finite
and positive, so log Var (N(t)) and log E (N(t)) are well defined.
We may think of N(t) as population density at time t .

Definition. TL applies to N(t) exactly for all t ∈ Θ if and only
if there exist real constants a > 0 and b such that, for all t ∈

Θ, Var (N(t)) = a (E (N(t)))b. Equivalently, TL applies to N(t) ex-
actly for all t ∈ Θ if and only if there exist constants a > 0 and b
such that

log Var (N(t)) − b log E (N(t)) = log a. (1)

The mean E (N(t)) and the variance Var (N(t)) refer to an
ensemble mean and ensemble variance at t (the mean and
the variance over independent realizations, e.g., in sufficiently
separated regions in space), not to a mean and variance over t .

Definition. TL applies to N(t) in the limit as t approaches some
finite or infinite limit θ ∈ Θ if and only if there exist real constants
a > 0 and b such that

lim
t→θ

[log Var (N(t)) − b log E (N(t))] = log a. (2)

These definitions intentionally leave unspecified the base of
the logarithms (e.g., e, 10, or 2) because TL is equally valid for
logarithms to any base. For the following analysis, log = loge.

3. Scalar discrete-time Markovian multiplicative growth

Assume N(0) is a fixed positive number. Suppose that

N(t) = A(t − 1)A(t − 2) · · · A(0)N(0), t = 0, 1, 2, . . . . (3)

Then A(t − 1) = N(t)/N(t − 1), t = 1, 2, . . . represents
the random factor of change from time t − 1 to time t . Assume
that each value of A(t) is taken from a finite set of positive num-
bers {d1, . . . , ds}, s > 1, at least two of which are distinct.
Intuitively, s is the number of states of the environment. By as-
sumption, each state of the environment determines a multiplica-
tive factor of change: if A (t − 1) = di, thenN(t) = diN (t − 1), for
i = 1, . . . , s and t = 1, 2, . . . . Assume {A(t), t = 0, 1, 2, . . .} is
a finite-state homogeneous Markov chain (‘‘a Markovian environ-
ment’’) with an s × s column-to-row (j → i) transition probability
matrix P =


pij

with pij ≥ 0,

s
i=1 pij = 1, i, j = 1, . . . , s and

Pr

A(t) = di|A (t − 1) = dj


= pij, i, j = 1, . . . , s; t = 1, 2, . . . .

(Notational aside: in many works on Markov chains, it is custom-
ary for the transition matrix P to specify row-to-column (i → j)
transition probabilities. But in many works on stochastic popula-
tion models in Markovian environments, the opposite convention
has become usual because it conforms with usual matrix–vector
multiplication. Onemust pick one convention or the other, and the
latter is used here.) Assume P has equilibrium probability s × 1
vector π = (πi) such that

s
i=1 πi = 1 and Pπ = π , and that

πi > 0, i = 1, . . . , s. Also assume that π is the initial distribution
of the Markov chain, i.e., Pr {A(0) = di} = πi, i = 1, . . . , s. Conse-
quently, Pr {A(t) = di} = πi, i = 1, . . . , s for all t = 0, 1, 2, . . . .

This model is a scalar case of much studiedMarkovianmultipli-
cativemodels for age- and stage-structuredpopulations (Bharucha,
1960, Furstenberg and Kesten, 1960, Bharucha, 1961, Cohen, 1976,
1977a,b, Tuljapurkar and Orzack, 1980, Tuljapurkar, 1982, 1986,
1990; review by Caswell, 2001; Tuljapurkar et al., 2009). The in-
crements {A(t)} are Markovian (by assumption) and therefore the
pair (A(t),N(t)) is Markovian, but N(t) by itself is not Markovian
unless {A(t)} are independent. (In the Lewontin and Cohen (1969)
model, N(t) is Markovian because {A(t)} are independent.)

Our main result is that, under certain conditions, this model
predicts TL in the limit of large time, and the parameters a and
b of TL can be expressed as functions of the parameters of the
Markovian model of A(t). To state this theorem precisely, we give
some definitions and notation.

Define the s × s diagonal matrix D = diag(di) to be zero every-
where except on the diagonal. The diagonal element dii = di > 0
is the value of A(t) in state i of the environment. We say that a di-
agonal matrix is scalar if it is some scalar multiple of the identity
matrix I , i.e., if all its diagonal elements are equal. Our assumption
that at least two values in {d1, . . . , ds} are distinct means that D is
not scalar.

For any s × s matrix Z , let r(Z) be the spectral radius of Z . The
spectral radius is themaximumof themagnitude of any eigenvalue
of Z . For any square matrix Z, r


Z t


= (r(Z))t ≡ r t(Z), t =

0, 1, 2, . . . .
By definition, a nonnegative s × s matrix A with s > 1 is ir-

reducible if and only if for each row i and each column j with
1 ≤ i, j ≤ n, there exists an integer p such that (Ap)ij > 0. The
transpose of A iswritten AT . A nonnegative s×smatrix Awith s > 1
is, by definition, two-fold irreducible if and only if A is irreducible
and ATA is irreducible (O’Cinneide, 2000; Altenberg, 2013).

Define 1T to be the row s-vector with each element 1. The
assumption that P is column-stochastic (each column sum is 1) is
equivalent to 1TP = 1T . For any real number p, (3) implies

(N(t))p = (A (t − 1))p · · · (A(0))p (N(0))p , t = 1, 2, . . . . (4)

Henceforth assume p > 0. Then because 0 < (N(t))p ≤

[(maxi=1,...,s di )tN(0)]p < ∞ with probability 1, E

(N(t))p


> 0

is well defined for p > 0. For t = 1,

E

(N(1))p


= E


A(0)p


N(0)p =


s

i=1

(di)pπi


N(0)p

= 1T (Dpπ)N(0)p = 1T (DpPπ)N(0)p. (5)

The last equality in (5) follows from π = Pπ . In (5) and (6),
π appears because the Markov chain was assumed stationary,
i.e., starting at its equilibrium distribution. Summing (4) over all
trajectories,

E

(N(t))p


= 1T DpP

t−1 DpPπ

N(0)p

= 1T DpP
t

πN(0)p, t = 1, 2, . . . . (6)

We assumed the diagonal of D is positive. We assume further
that P is two-fold irreducible. In an empirical application, P is likely
to be positive. Since every positive matrix is two-fold irreducible,
the assumption that P is two-fold irreducible is likely to be easily
satisfied in an empirical application. The assumption that P is two-
fold irreducible is the minimal condition necessary and sufficient
to prove the eigenvalue inequalities which we use to prove our
main result (Cohen, in press). It remains unknown whether our
main result could be proved under the weaker assumption of
Tuljapurkar (1982) that P is primitive (irreducible and aperiodic
or ergodic).
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