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a b s t r a c t

Cooperative interactions, their stability and evolution, provide an interesting context inwhich to study the
interface between cellular and population levels of organization. Here we study a public goods model rel-
evant to microorganism populations actively extracting a growth resource from their environment. Cells
can display one of two phenotypes — a productive phenotype that extracts the resources at a cost, and a
non-productive phenotype that only consumes the same resource. Both proliferate and are free to move
by diffusion; growth rate and diffusion coefficient depend only weakly phenotype. We analyze the con-
tinuous differential equation model as well as simulate stochastically the full dynamics. We find that the
two sub-populations, which cannot coexist in a well-mixed environment, develop spatio-temporal pat-
terns that enable long-term coexistence in the shared environment. These patterns are purely fluctuation-
driven, as the corresponding continuous spatial system does not display Turing instability. The average
stability of coexistence patterns derives from a dynamic mechanism in which the producing sub-
population equilibrates with the environmental resource and holds it close to an extinction transition
of the other sub-population, causing it to constantly hover around this transition. Thus the ecological in-
teractions support a mechanism reminiscent of self-organized criticality; power-law distributions and
long-range correlations are found. The results are discussed in the context of general pattern formation
and critical behavior in ecology as well as in an experimental context.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cooperative behavior of individuals in nature has attracted the
interest of scientists for many years (Axelrod and Hamilton, 1981;
Michod and Roze, 2001; Nowak, 2006). The evolution and stabil-
ity of cooperation is sometimes formulated as a dilemma or con-
flict between the optimal strategy of the individual and that of the
population. More generally, cooperative interactions and their sta-
bility provide a fascinating context in which to investigate the re-
lations between these two levels of organization — the individual
and the population. Indeed, a biological population is more than
a collection of individuals: it is characterized by its interactions
— direct and indirect, by its memory through inheritance, and by
its relation with the environment (Moore et al., 2013; Stolovicki
and Braun, 2011). Therefore, phenomena at the population level,
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including evolutionary dynamics and long-term stability of indi-
vidual traits, are necessarily affected by all these ingredients.

Populations of microorganisms provide a valuable model sys-
tem to study cooperative interactions. Much is known about the
mechanisms underlying microbial cooperative behavior: muta-
tions, gene expression and other processes affect cellular behav-
ior, which in turn affects the environment and feeds back on the
individual dynamics (Kummerli et al., 2009; Elhanati et al., 2011).
Thus these systems offer concrete test cases for many fundamen-
tal issues at the intersection between the individual, the popula-
tion and the environment. Microbial populations have the great
advantage of allowing controlled experiments, where predictions
can be tested quantitatively; at the same time the detailed bi-
ological knowledge about the processes involved places severe
constraints on the models relevant to these systems (Schuster
et al., 2010; Damore and Gore, 2012). Indeed previous work has
shown that conclusions drawn on fundamental problems may de-
pend subtly on details of realization of the particular biological
system. In the present work we focus on models appropriate for
microbial interactions taking into account carefully the constraints
that they pose.
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One important type of cooperative interaction is induced by the
production of public goods: in a population inhabiting a shared en-
vironment, individuals depend on a resource for their growth or
survival. The resource can be produced or actively extracted from
the environment by the individuals, generally at some cost. Once
produced, it is shared by other population members as well, thus
defining a setting with some degree of cooperation. The more gen-
eral problem known as public goods cooperation has been con-
sidered in several different contexts, from abstract game theory
in which encounter rules are defined (Hauert et al., 2006, 2008),
through theoretical evolutionary models (Doebeli et al., 2004) and
to biophysical aspects of microorganism model systems that se-
crete resource-extracting molecules outside the cell boundaries
(Craig Maclean and Brandon, 2008; Gore et al., 2009; Kummerli
et al., 2009; Velicer and Vos, 2009). In general it is by now well
established that various mechanisms at the population level can
break the symmetry between producers and non-producers, sup-
porting privileged share of the resource to the productive indi-
viduals, or inducing assortment of sub-populations, thus enabling
coexistence of productive and non-productive phenotypes in the
same environment (Nowak, 2006; Damore andGore, 2012). Spatial
structure and mobility, for example, is one such mechanism that
has a strong effect on the public goods problem in its various lev-
els of abstraction (Hamilton, 1971; Eshel, 1972; Nowak et al., 1994;
Irwin and Taylor, 2001; Perc et al., 2013). Intuitively, when cells
are proliferating in different regions in space, and if the coopera-
tive trait is inherited, then it will be directed mainly towards other
cooperators. However, different mechanisms can support coexis-
tence in a spatially extended environment and, once again, their
fundamental nature may depend on the details of the system.

Previous work on spatial public goods dynamics has focused on
a class of models derived from the public goods game in econ-
omy, where a well-defined group interacts by individual con-
tribution and a reward common to the group (Wakano, 2007;
Wakano et al., 2009; Wakano and Hauert, 2011). This model
was transformed to partial differential equations and coexistence
was found in one of two possible cases: (A) coexistence already
emerges in the mean field ordinary differential equation (ODE);
(B) there is no coexistence in the mean field, but a Turing insta-
bility in the spatial model described by partial differential equa-
tions (PDE) induces spatial patterns of coexistence. In this case,
as is typical of the Turing mechanism, the diffusion coefficients of
the producers and non-producersmust differ greatly (Wakano and
Hauert, 2011).

In the context of microbial populations there is no biological
justification to assume a difference in diffusion coefficient between
different physiological states or even different strains of the same
organism. Thus, an argument is needed for the more general case,
where diffusion is not strongly dependent on the production of
common goods, and where co-existence is impossible in the mean
field. We here present and study such a model, which is quite gen-
erally suited formicrobial populations actively extracting a growth
resource from the environment.

In a well-mixed environment with homogeneous interactions,
themodel exhibits an extreme ‘‘tragedy of the commons’’ scenario:
non-productive individuals have a higher fitness, take over the
population, and cause extinction due to the extreme dependence
of growth on the extracted resource. This is the only fixed point
of the well-mixed system, sharpening the question of rescue from
the tragedy of extinction. The model has been proposed and stud-
ied previously in the presence of strategy changes induced by gene
expression, either randomor by environmental feedback; then, co-
existence can be stabilized in a well-mixed system (Elhanati et al.,
2011). Here we resort to the basic resource-extraction dynamics
without change of strategy, but in the presence of spatial and de-
mographic fluctuations.

Embedding the populations in space in a continuous dynam-
ical system description with diffusion does not induce non-
homogeneous solutions; namely, there is no Turing instability (in
contrast to other studied systems of spatial public good games
(Wakano et al., 2009)). However, we find that when the discrete
stochastic nature of the interactions is taken into account, mobil-
ity in space and demographic noise drive the system to a solution
where spatio-temporal patterns prevail and allow a nontrivial co-
existence of the productive andnon-productive sub-populations in
a large region of parameter space. The mechanism underlying this
phenomenon is basedon the existence of an absorbing state extinc-
tion transition, a slow timescale of competition, and the stochastic
dynamics characteristic of a discrete population of cells. We pro-
pose an analogy of this mechanism to self-organized criticality and
discuss its relation spatio-temporal patterns found in other ecolog-
ical models.

2. Methods

2.1. Numerical integration of ODE and PDE

The ODEs were solved numerically using the Matlab fourth-
order Runge Kutta (Jameson et al., 1981), as applied in theMATLAB
ode45 function assuming non-stiff equations (Hanselman and
Littlefield, 1997). The partial differential equations (PDEs) were
solved using a fourth-order Runge Kutta on a two-dimensional
100 × 100 square lattice, with periodic boundary conditions.
The diffusion scheme that was used was a second-order leapfrog
scheme (Alexander, 1977).

2.2. Stochastic simulation

Monte Carlo simulations of the studied model were performed
on a two-dimensional 100 × 100 square lattice with periodic
boundary conditions. We initiated the reactants at random posi-
tions and enacted each reaction separately. We computed at each
lattice point the probability of each reaction and performed re-
actions according to the prescribed probabilities. At high reaction
rates, we used a Poisson approximation (Aparicio and Solari, 2001).
The simulation updating was asynchronous (i.e. the lattice sites
were updated one at a time with a random order). In each time in-
terval (dt) all lattice siteswere updated based on the current values
in the lattice. The dynamicswere simulated for different parameter
values. The lattice size used was the two-dimensional 100 × 100
unless otherwise noted. The simulation was described in detail in
previous publications (Agranovich et al., 2006; Behar et al., 2012;
Davidovich and Louzoun, 2013).

3. Model presentation

Our model describes a population of microorganisms in an en-
vironment that allows growth in principle; however the growth re-
source is not directly available for the cells tometabolize but rather
needs to be actively extracted. This situation is encountered, for
example, when complex sugars need to be hydrolyzed by enzyme
secretion (Carlson and Botstein, 1982; Jones et al., 1992) or iron
needs to be chelated (Hider and Kong, 2010). The cooperative pub-
lic goods problem is formalized in this context as follows: one type
of cell, with a population size NP , produces the growth resource,
while the other type, with a population size NNP does not. The two
sub-populations consume the resource C and proliferate following
resource consumption. It is important that the resource is abso-
lutely essential for growth, as further discussed below. The fitness
difference between the two sub-populations is modeled as a lower
net death rate of the non-productive type, representing the cost
or internal resources invested to create the growth resource C .
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