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a b s t r a c t

As researchers collect spatiotemporal population and genetic data in tandem, models that connect
demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model
of invasion genetics is the stepping-stone model which represents a gradual range expansion in which
individuals jump to uncolonized locations one step at a time. However, many range expansions occur
quickly as individuals disperse far from currently colonized regions. For these types of expansion,
stepping-stone models are inappropriate. To more accurately reflect wider dispersal in many organisms,
we created kernel-basedmodels of invasion genetics based on integrodifference equations. Classic theory
relating to integrodifference equations suggests that the speed of range expansions is a function of
population growth and dispersal. In our simulations, populations that expanded at the same speed but
with spread rates driven by dispersal retained more heterozygosity along axes of expansion than range
expansions with rates of spread that were driven primarily by population growth. To investigate surfing
we introduced mutant alleles in wave fronts of simulated range expansions. In our models based on
random mating, surfing alleles remained at relatively low frequencies and surfed less often compared
to previous results based on stepping-stone simulations with asexual reproduction.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Range expansions explain the wide spatial distribution of many
dominant species. Unfortunately however, researchers often have
only a snapshot of the extent of a recently expanded range rather
than a complete spatiotemporal dataset. Genetic data have been
used to elucidate processes underlying range expansions based on
these snapshots, fromour ownplanetary conquest (Ramachandran
et al., 2005) to the post-glacial expansion of grasshoppers (Hewitt,
1999). Such insights, based on snapshots of genetic patterns on the
landscape, are predicated on models that connect the dynamics,
movement and genetics of populations. Thus, spatiotemporal
genetic models are increasingly relevant as we accumulate large
genetic databases. In this research we introduce integrodifference
models as an alternative modeling framework in invasion genetics
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with a sound mathematical and ecological basis. Integrodifference
equations are discrete-time, continuous-space models that apply
to range expansions in which populations have synchronized
growth and dispersal stages (Neubert et al., 1995). Thus, they are
useful for many herbaceous, invertebrate, and vertebrate species
prone to invasion (Kot et al., 1996).

Currently, invasion models with analytical solutions for the
patterns of genetic diversity that they produce are limited to
the island model (Wright, 1951; Buerger and Akerman, 2011)
and the stepping-stone model (Kimura and Weiss, 1964; Thibault
et al., 2009; DeGiorgio et al., 2011; Slatkin and Excoffier, 2012). In
the island model, subpopulations receive migrants at a constant
rate from a single unchanging source population, whereas in the
stepping-stone model, unoccupied demes are colonized sequen-
tially one after another, and only receive migrants from adjacent
subpopulations (Kimura and Weiss, 1964; DeGiorgio et al., 2009,
2011). Many dispersing organisms however, canmove to locations
beyond adjacent unoccupied areas (Levin et al., 2003) and dispersal
is an important determinant of the speed of population expansion
in space (Kot et al., 1996). For these reasons, neither the island nor
the stepping-model in their original form is realistic in terms of
population processes or dispersal (Le Corre and Kremer, 1998).
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Realismhas been added inmodeling studies in a variety ofways.
The stepping-stone model has been amended to include more
realism by incorporating logistic population growth (Austerlitz
et al., 1997). The consequences of Allee effects have also been
explored in haploid model systems using the reaction–diffusion
framework (Hallatschek and Nelson, 2008; Roques et al., 2012).
The impact of stepping-stone, diffusive, and leptokurtic dispersal
on genetic patterns has been explored by Nichols and Hewitt
(1994) and by Ibrahim et al. (1996) using simulations featuring
logistic population growth. Other simulation studies investigated
differences between the effect of stratified and diffusive dispersal
on the genetic structure of maternally inherited genes (Le Corre
et al., 1997) and on genetic diversity along axes of range expansion
(Bialozyt et al., 2006).

Results from simulations and simple models with analytical so-
lutions underpin our understanding of how heterozygosity within
populations decreases along axes of expansion (Austerlitz et al.,
1997; Le Corre et al., 1997; Nichols and Hewitt, 1994). Heterozy-
gosity reduction in expanding populations is a consequence of ge-
netic drift that results from population bottlenecks at the front
of range expansions (Austerlitz et al., 1997). Heterozygosity loss
due to genetic drift can explain how genetic diversity is reduced at
the front of expanding populations, but another mechanism called
allele surfing (Edmonds et al., 2004; Hallatschek et al., 2007; Hal-
latschek and Nelson, 2010; Lehe et al., 2012) may explain why cer-
tain alleles persist there. In allele surfing, alleles andmutations that
occur near the front of population expansions are able to prolifer-
ate and achieve higher frequencies than expected in populations at
equilibrium (Excoffier and Ray, 2008). Most studies of allele surf-
ing have focused on stepping-stonemodels withmaternally inher-
ited alleles, which is equivalent to asexual reproduction (Edmonds
et al., 2004; Hallatschek et al., 2007; Hallatschek and Nelson, 2008;
Lehe et al., 2012). Therefore, the importance of allele surfing in
range expansions with other mating systems and wide dispersal
has not been established.

In part due to wide dispersal, many biological invasions expand
quickly rather than at the evolutionary time scales typically asso-
ciated with human expansion out of Africa (Ramachandran et al.,
2005) or with the expansion of oak trees in Europe (Hewitt, 1999).
Therefore ecologists are often interested in understanding pro-
cesses that underly expansions that have occurred over ecological
time scales of tens of years rather than over thousands of years.
The speed at which populations expand in space is determined by
demographic growth and dispersal (Kot et al., 1996) and therefore
models that clearly connect invasion speeds to these population
traits are essential when studying rapid range expansions. Using
integrodifference equations as the basis for our investigation of the
genetic signature of range expansions allowed us to compute the-
oretical invasion speeds from demographic growth and dispersal
parameters using classic theory (Kot et al., 1996).

The primary objective of this research was to study genetic
diversity patterns arising in rapid range expansions. We therefore
used integrodifference equation-based models to simulate over
relatively short time periods with wide dispersal kernels that
overlapped many demes. We compared the relative impacts of
demographic growth and dispersal on the genetic signatures of
range expansions spreading at the same speed, explored the
genetic consequences of varying diffusivity in expansions with
identical demography, simulated anisotropic range expansions in
two spatial dimensions, and compared heterozygosity patterns as
well as the distribution of surfing alleles produced by simulated
range expansionswith a variety of dispersal kernels. Asmuchof the
previous work on allele surfing in range expansions has focused on
asexual or haploid model systems, we also contrasted results from
simulations with randommating to those with asexual mating.

2. Models

2.1. Population dynamics and spread models

Weconsider a specieswith Beverton–Holt population dynamics
(Beverton, 1957). The species reproduces synchronously before
dispersing in space according to a dispersal kernel k(x − y), which
describes the probability that an animal moves from location y to
location x. The resulting integrodifference model is

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (1a)

Nt+1(x) =


Ω

k(x − y)f (Nt(y))dy, (1b)

where Nt(x) is the population density in space at time t, R0 is the
geometric growth parameter and K is the carrying capacity. The
infinite one-dimensional spatial domain is represented by Ω .

The dispersal kernel formulation is very flexible and a variety of
dispersal behaviors can be modeled by changing it (Neubert et al.,
1995). The assumption of spatially homogenous diffusive dispersal
is embodied in the Gaussian dispersal kernel:

k(x − y) =
1

√
4πD

exp


−(x − y)2

4D


, (2)

where D is the diffusion constant. Note our diffusion constant
represents Dt in standard formulations of random-walk-based
diffusion models (Codling et al., 2008). This diffusion constant
can be derived based on the probability that an individual will
jump to the right, to the left, or not move (Codling et al., 2008).
Although it is tempting to use diffusion to describe all animal
movement, dispersal inmany species is better approximated using
leptokurtic distributions (Walters et al., 2006; Skarpaas and Shea,
2007) in which individuals have a higher probability of dispersing
short and long distances than in a Gaussian kernel with the
same variance. Therefore, we also simulate range expansions with
double exponential (Laplace) and fat-tailed kernels, both of which
are leptokurtic.

The Laplace kernel, when derived based on a diffusive model
with constant settling (Neubert et al., 1995), has the form

k(x − y) =
1
2


a/D exp


−


a/D|x − y|


, (3)

whereD is the diffusion constant as before, a is the constant settling
rate, and k(x − y) describes the distribution of settled individuals.

Fat-tailed dispersal kernels are those without exponentially
bounded tails. Authors have argued based on simulation studies
that longer-distance dispersal is increasingly selected for over the
course of invasions leading to the evolution of fat-tailed kernels
(Phillips et al., 2008). A typical fat-tailed kernel comes from Wal-
lace (1966) and Taylor (1978) who described the relationship be-
tween distance from a release point and density of fruit flies using

k(x − y) =
α2

4
exp


−α


|x − y|


, (4)

where α determines the rate of decrease with the square root of
distance.

For kernels with moment-generating functions such as (2) and
(3), the model equation (1) has traveling wave solutions that
connect the zero equilibrium in front of the wave to the carrying
capacity equilibrium at the top of the wave (Kot et al., 1996). For
range expansions that have these traveling wave solutions, we can
compute the minimum traveling wave speed. Locally introduced
populations that grow and spread according to the Gaussian kernel
(2) have a minimum traveling wave speed c(R0,D) = 2

√
D ln(R0)
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