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The distribution of allele frequencies of a large number of biallelic sites is known as “allele-frequency
spectrum” or “site-frequency spectrum” (SFS). Without selection and in regions of relatively high
recombination rates, sites may be assumed to be independently and identically distributed. With a
beta equilibrium distribution of allelic proportions and binomial sampling, a beta-binomial compound
likelihood for each site results. The likelihood of the data and the posterior distribution of two parameters,
scaled mutation rate ¢ and mutation bias «, is investigated in the general case and for small scaled
mutation rates 6. In the general case, an expectation-maximization (EM) algorithm is derived to obtain
maximum likelihood estimates of both parameters. With an appropriate prior distribution, a Markov chain
Monte Carlo sampler to integrate the posterior distribution is also derived. As far as I am aware, previous
maximum likelihood or Bayesian estimators of 6, explicitly or implicitly assume small scaled mutation
rates, i.e, 6 < 1. For & <« 1, maximum-likelihood estimators are also derived for both parameters
using a Taylor series expansion of the beta-binomial distribution. The estimator of 6 is a variant of the
Ewens-Watterson estimator and of the maximum likelihood estimator derived with the Poisson Random
Field approach. With a conjugate prior distribution, marginal and conditional beta posterior distributions

are also derived for both parameters.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With relatively high recombination compared to mutation
rates, each polymorphic nucleotide or site can be considered in-
dependently. The distribution of allele frequencies of a large num-
ber of such loci has been called “allele-frequency spectrum” or
“site-frequency spectrum” (SFS). Without selection, identical mu-
tation distributions and demographic history for all sites may be
assumed, i.e., sites are independently and identically distributed
and subject only to the population genetic forces of mutation and
drift. With a biallelic model, the first to derive the beta equilib-
rium distribution of the allelic proportion in a population was ap-
parently Wright (1931). Application to large scale data has usually
focused on the parameter range of small scaled mutation rates, i.e.,
6 = uN < 1, where u is the total mutation rate (including un-
observable mutations) per site and generation and N is the (effec-
tive) haploid population number or size. In this parameter range,
maximum likelihood and Bayesian estimates of 6 from SFS data of
sample size L loci and M alleles have been derived using the Pois-
son Random Field (PRF) approach (Hartl et al., 1994; Bustamante
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et al, 2001, 2003; RoyChoudhury and Wakeley, 2010). In particu-
lar, the number of polymorphic sites in the sample was found to be
a sufficient statistic. The other parameter of the beta, which can be
parametrized as mutation bias, has been ignored so far.

In this article, an expectation-maximization (EM) algorithm
is derived for the general case, i.e., arbitrary 6, to obtain the
maximum likelihood estimates of both the scaled mutation rate 6
and the mutation bias «.. The EM algorithm requires the solution of
a polynomial of order M during each step. A Metropolis-Hastings
Markov chain Monte Carlo sampling algorithm that approximates
the joint posterior is also presented. For small scaled mutation
rates, ie, 6 <« 1 the maximum-likelihood estimates for
both parameters are derived. Given appropriate conjugate prior
distributions, the marginal distribution of & then depends only on
the frequency of polymorphic sites in the SFS and is a generalized
beta; the conditional distribution of the mutation bias o depends
on @ and the frequencies of sites with the two monomorphic types
and is also a generalized beta. With these two distributions, the
joint posterior distribution is also obtained.

2. Biallelic mutation drift

In this section, the biallelic mutation drift model and its
equilibrium beta distribution is reviewed. Usually, the diploid
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Wright-Fisher model is taken as a starting point to derive the
diffusion model. The haploid decoupled Moran model is, however,
slightly more convenient.

Assume a population of N haploid individuals; each may as-
sume the state of zero or one, corresponding to the two arbitrar-
ily labeled alleles. With the decoupled Moran model (Baake and
Bialowons, 2008; Etheridge and Griffiths, 2009; Vogl and Clemente,
2012), per step either (i) (mutation) at arate of 4 = o+ 41, aran-
dom individual i is picked to mutate to type one with probability
W1/ or to type zero with probability g/ w; or (ii) (genetic drift) at
arate of one, a random individual i is replaced by another random
individual j. Thus, the rate of change of the allelic proportion x per
unit time of the mean is caused by mutation

1 1
Msy = m@(a(l —x)— (1 —a)x)N = m@(a — X)N, (1)

and that of the variance by genetic drift
2 2
Vix = z%(1 = 0N, (2)

Scaling space with 1/N and time with 1/N? and taking the appro-
priate limits, the Kolmogorov forward (or Fokker-Planck) diffusion
equation

2 00 = (Lxt -0 - L@ ) s 1 3)
— ¢ t) = 75x(1 —%) — —0(a — ,
ot 0x? 0x
then describes the evolution of the probability of the allelic pro-
portion x forward in time t. This is the same temporal direction as
the transitions in the Wright-Fisher and Moran models.
The equilibrium density of this process is beta (Wright, 1931),

ro
I'(ad)I(BO)

as can be shown by substituting into the forward diffusion
equation (3). The corresponding equilibrium density for the diploid
Wright-Fisher model is obtained from (4) by replacing 86 = uN
with 6* = 4uN.

Pr(x | a,0) = x‘w*](] _ X)ﬁgﬂ, @)

3. General model
The following is assumed:

Assumption 1. Allele frequency data of biallelic loci (sites), i.e., SFS
data, are available from L < oo loci, indexed by 1 <[ < L.

Assumption 2. The allelic proportions x, at each of the L sites are
independently and identically beta distributed.

Assumption 3. The likelihood of the allelic frequencies y, in the
sample are binomial with parameters x; and identical sample
size M.

Note that generalization to multiallelic loci is possible, as long
as mutations are parent independent. Furthermore, dropping the
assumption of constant M for all L only increases the complexity of
notation.

3.1. The equilibrium distribution

The frequency of the, arbitrarily chosen, first allelic type in the
sample is y; that of the other allelic type is M —y. Set L, to the num-
ber of samples with y alleles of the first type; obviously: Zy L, =1L

As shown in the previous section, the equilibrium distribution
of the allelic proportion x of the first allele is beta (4). Given a small
sample of size M the joint distribution of the number of alleles y of
the first type, i.e., the likelihood given ¥, is assumed to be binomial.

The joint distribution of y and x is:

Pr(-y, X | 9’ M) = (M) LQ) y+af—1
y /) I'(ed)I(BY)
x (1 — x)M-y+po-1, (5)

Integrating out x gives the beta-binomial (compound) distribu-
tion:
Pr(y | @, 6, M)
(M ro)
- (y) r@d)rpo) Jo
M ) 'y+ad)I'(M —y+ BO)
B <y ) I (@8)T' (B9) (M +6) '

The likelihood is a product of beta-binomials:

1
X}FHX@*](«I _ X)M*y+/3971 dx
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Pr(lo,....Ly |, 0, M) = — H(( )
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r'(y+a6)r M —y+ﬂ9))Ly
9 ) (7)
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Interest is centered on obtaining (maximum-likelihood) estimates
of 6 and « given the vector of allelic counts (L, ..., Ly) or, in
a Bayesian context, their posterior distribution given a suitable
prior. As a function of «, the distribution is a weighted sum of
beta distributions; as a function of @, the distribution is a ra-
tional function. A rational function can be integrated by par-
tial fraction decomposition. Introduction of auxiliary variables
that count the number of mutations in each allelic class condi-
tional on 6, «, y and M simplifies the task of finding estimators
and posterior distributions. The following theorem provides their
distribution.

Theorem 1. With parent independent mutation, the number j of
mutations in an allelic class, conditional on the scaled mutation rate
towards this class, i.e., a6 (or BO respectively), and the number of
samples of this type y (or M — y respectively) is distributed according
to the weighted Stirling distribution of the first kind (Ewens, 1972)
and conditionally independent of that in other allelic classes.

Proof. Only the case for the first allelic type is provided; that of
the other allelic type follows analogously.—It is well known that
the probability of coalescence within a sample of size i = y with
y > 1is proportional to i — 1 while the probability of a mutation is
proportional to af. Thus the number of mutations in this sample
is one with probability 6 /(e + i — 1), and zero otherwise. The
moment generating function is obviously

L oafel+i—1

mgf;(t | af,i) = i1 (8)
With a coalescence event, the number of samples is reduced by one.
With parent independent mutation, no information is gained by
knowing the allelic type from which the mutation occurred. Thus
the number in the sample is reduced by one to i — 1 both with a
mutation and a coalescence. The process then repeats until i = 1,
where a mutation event occurs with certainty. Since the events
are obviously independent for each level, the moment generating
functions multiply:

y—1 tj : tj

wbei +i (69 +y)I(h)
mgf.(t | af,y) = = - .
it lab.y) =[] «b+i  T(@hed) (b +y)

i=0

(9)
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