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a b s t r a c t

We study a simple model for generation cycles, which are oscillations with a period of one or a few gen-
eration times of the species. The model is formulated in terms of a single delay-differential equation for
the population density of an adult stage, with recruitment to the adult stage depending on the intensity of
competition during the juvenile phase. This model is a simplified version of a group of models proposed
by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-
feedback cycles. According to these authors, the two oscillation types are caused by differentmechanisms
and have periods in different intervals, which are one to two generation times for single-generation cycles
and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between
the maturation time and the time delay between competition and its effect on the population dynamics,
we find that single-generation cycles and delayed-feedback cycles occur in the samemodel version, with
a gradual transition between the two as the model parameters are varied over a sufficiently large range.
Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinc-
tion between different types of generation cycles is not possible. Cycles of all periods and even chaos can
be generated by varying the parameters that determine the time during which individuals from different
cohorts competewith each other. This suggests that life-cycle features in the juvenile stage and during the
transition to the adult stage are important determinants of the dynamics of density limited populations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Ecological models which involve the age or size structure of a
population have been studied for almost one century now (Ker-
mack and McKendrick, 1927). It is known that the detailed age or
size structure of populations can have amajor influence on the dy-
namics of ecological systems. Vital rates, such as growth rate, death
rate and fecundity are in general dependent on the age of an in-
dividual (de Roos et al., 2003a). The structure of a population is
important for effects such as generation cycles (Gurney and Nis-
bet, 1985; Knell, 1998; Ruxton and Gurney, 1992), juvenile bot-
tle necks (Neill, 1988), life boat mechanisms (Bosch et al., 1988),
host–parasite interaction (Godfray andHassell, 1989;Gordon et al.,
1991; Godfray, 1987) or emergent Allee effects (Courchamp et al.,
1999; de Roos et al., 2003b), as well as for the effects of environ-
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mental stochasticity (Bjørnstad et al., 2004). A population can ei-
ther be structured by age or size. In the first case the development
of an individual always follows the same time course, while in the
second case development depends on food intake andmetabolism.
Mathematical models can capture the population structure in dif-
ferent ways, the three most prominent being stage structured
models that divide a population into several stages in which the
vital rates are uniform among all individuals (Gurney et al., 1980,
1983), matrix models that use discrete time steps and a matrix
as the update function of a state vector (Caswell, 2001), and fi-
nally physiologically structured models that define the vital rates
as functions of the continuous structure parameter (de Roos, 1996).

In this paper,we focus on generation cycles and investigate age-
structured stage models. Generation cycles are a consequence of
population structure that has been observed in a wide spectrum
of field and laboratory populations. Even a single species in a con-
stant laboratory environment can exhibit population density os-
cillations, as has been shown by Nicholson in the famous blow-fly
experiments (Nicholson, 1954, 1957). A population of blow flies
was kept under constant conditions with a constant daily amount
of resource and itwas observed that the population fluctuatedwith
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a period slightly larger than the generation time. Such an oscilla-
tion period of the order of the generation time is the indicator of
generation cycles. In contrast to this, other types of population cy-
cles, like predator–prey cycles, have larger periods depending on
the life cycle of predator and prey (Murdoch et al., 2002). Genera-
tion cycles are frequently observed in natural populations (NERC,
2010) and they can occur in isolated species as well as in general-
ist species that are likely to have a stable resource basis, whereas
predator–prey cycles are more common for specialist predators
(Murdoch et al., 2002).

Gurney and Nisbet (Gurney and Nisbet, 1985; Gurney et al.,
1983) investigated generation cycles by a comprehensive stage
structured population model and identified mechanisms behind
these cycles. The model was inspired by the laboratory situation of
constant food supply. The population was divided into a juvenile
and an adult stage. The cycles were found to be driven by density
dependent competition of juveniles. According to the model, this
competition can be due to four different effects: a direct death
of juveniles (Larval Death LD), increased development time of
juveniles (Maturation TimeMT ), decreased survival of pupae (Pupal
Survival PS), or a decreased fecundity in the adult stage (Adult
Fecundity AF ). Gurney and Nisbet studied 4 different versions of
their model, each of which contained one of these effects. They
evaluated these models in the vicinity of the Hopf bifurcation
that marks the onset of oscillations in parameter space. The main
findings were that a competition that has a direct influence on the
population dynamics (LD and MT) leads to cycles of 1–2 times the
maturation time τ , while competition that has a delayed influence
on the dynamics (PS and AF) leads to cycles of 2–4 times the
maturation time. These two disjoint intervals of one octave led to
a classification of generation cycles into single generation cycles for
cycles with periods between τ and 2τ , and delayed feedback cycles
for periods from 2τ to 4τ . This theory has been considered to be
among the ‘‘most important advancements in the theory about the
life history-population dynamic interplay’’ (de Roos et al., 2003a).

The findings of Gurney and Nisbet thus suggest that the os-
cillation period does not depend on all details of the model but
essentially on the time period during which density-dependent
competition affects a population. In this respect their results ap-
pear to be very general. On the other hand, their investigation is
constrained by the strict coupling between the maturation time
and the time delay between competition and its effect on the pop-
ulation. This delay is either zero (LD and MT models) or one gen-
eration (PS and AF models). However, the effect of competition is
usually a combination of several of the above-mentioned phenom-
ena. Additionally, competition can have effects over time periods
other than zero and the maturation time, if, for instance, the food
consumption of one cohort affects the food available to another co-
hort, or if the duration of the non-competing egg and pupal stages
cannot be neglected.

In this paper, we present and investigate amodel that fills these
gaps. Ourmodel considers the time period overwhich competition
is felt by a cohort as a separate parameter, different from the
maturation time, and variable within realistic limits. The model
has the same general form as the PS model, but includes a simpler
expression for the density-dependent probability to survive from
birth into the adult stage. It contains the situations described by
the PS and LD models as special cases, and we find in these cases
a dynamical behavior similar to that of the LD and PS models,
thus confirming again that the main determinant of the oscillation
period is the relation between the maturation time and the time
delay over which competition is felt. We corroborate this finding
further by briefly studying two additional model versions that
have a complexity intermediate between our simple model and
the LD and PS models by Gurney and Nisbet and display a similar
dynamical behavior. Due to the greater computer power and new

Fig. 1. Sketch of the model.

numerical solvers, we were able to investigate the original LD
and PS models beyond the parameter range originally studied by
Gurney and Nisbet, revealing oscillation periods much larger than
four times the maturation time in the PS model and even chaos.
We also study our model for general values of the competition
time, confirming and complementing all these results. Typically,
the periods of generation cycles cover a broad range of values
and can be continuously changed by changing the competition
time. It follows that periods do not lie in disjoint intervals of one
octave, whichmakes a clear distinction between single-generation
cycles and delayed-feedback cycles impossible. Furthermore, we
find chaotic behavior in almost all model versions.

Our general model is described in detail in the next section.
Section 3.1 presents the results for the two parameter sets that
show a similar behavior to the LD and PS models by Gurney and
Nisbet, which are also studied. Section 3.2 discusses the model
dynamics for general values of the parameters. The conclusions are
drawn in Section 4.

2. Model

The model is of the same form as the PS model by Gurney and
Nisbet (1985). A sketch of the model is given in Fig. 1. The popu-
lation is divided into two stages, the juvenile stage, which is not
explicitly modeled, and the adult stage with a population density
A(t). Our fundamental equation for the population dynamics is

dA(t)
dt

= s(t) · f · A(t − τ) − d · A(t). (1)

New individuals are born with a rate f (‘‘fecundity’’) that is pro-
portional to the number of adults. The newborn juveniles need a
time τ to mature to adults. Only a proportion s(t) of the juveniles
survive maturation. The survival function s(t) depends on compe-
tition for food during the competitive part of the juvenile stage. The
adults die with a constant death rate d. As we show in Appendix A,
the general model described by Eq. (1) is identical to the PS model
by Gurney and Nisbet (1985). Other model versions by Gurney and
Nisbet are obtained by introducing a density dependent death rate
for the juvenile stage, or bymaking thematuration time τ or the fe-
cundity f density dependent. These versions however are not con-
sidered in the following.

In the PS model, the survival function s(t) depends via a dou-
ble integral on the population densities between time t − 2τ and
t . In general, the survival function is a decreasing function of the
strength of competition that an individual has experienced dur-
ing the juvenile stage, as indicated in Fig. 2(a). In order to make
the model more transparent, while preserving its most important
features, we use a simpler form for s(t) with less parameters than
in the PS model. We assume a linear dependence of the survival
function s(t) on the birth rate of competitors C(t) (to be specified
below) of the cohort that matures at time t , see also Fig. 2(a):

s(t) = max

rmax ·


1 −

C(t)
Cmax


, 0


. (2)

The survival function is rmax without competitors and 0 for C(t) ≥

Cmax. A linear form is a good approximation if the system is close to
a fixed point. In fact, we will see that even far away from the fixed
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