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a b s t r a c t

In order to understand the development of non-genetically encoded actions during an animal’s lifespan,
it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to
the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often
studied in evolutionary biology via agent-based computer simulations. In this paper, we show that
stochastic approximation theory can help to qualitatively understand learning dynamics and formulate
analytical models for the evolution of learning rules. We consider a population of individuals repeatedly
interacting during their lifespan, and where the stage game faced by the individuals fluctuates according
to an environmental stochastic process. Individuals adjust their behavioral actions according to learning
rules belonging to the class of experience-weighted attraction learning mechanisms, which includes
standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory
in order to derive differential equations governing action play probabilities, which turn out to have
qualitative features of mutator-selection equations. We then perform agent-based simulations to find
the conditions where the deterministic approximation is closest to the original stochastic learning
process for standard 2-action 2-player fluctuating games, where interaction between learning rules and
preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in
a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way
with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying
stochastic approximation theory in the study of animal learning.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The abundance of resources and the environments to which
organisms are exposed vary in space and time. Organisms are thus
facing complex fluctuating biotic and abiotic conditions to which
they must constantly adjust (Shettleworth, 2009; Dugatkin, 2010).

Animals have a nervous system, which can encode behavioral
rules allowing them to adjust their actions to changing environ-
mental conditions (Shettleworth, 2009; Dugatkin, 2010). In par-
ticular, the presence of a reward system allows an individual to
reinforce actions increasing satisfaction and material rewards and
thereby adjust behavior by learning to produce goal-oriented ac-
tion paths (Thorndike, 1911; Herrnstein, 1970; Sutton and Barto,
1998; Niv, 2009). It is probable that behaviors as different as for-
aging, mating, fighting, cooperating, nest building, or information
gathering all involve adjustment of actions to novel environmental
conditions by learning, as they have evolved to be performed un-
der various ecological contexts andwith different interaction part-
ners (Hollis et al., 1995; Chalmeau, 1994; Villarreal and Domjan,
1998; Walsh et al., 2011; Plotnik et al., 2011).
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In the fields of evolutionary biology and behavioral ecology
there is a growing interest in understanding how natural selection
shapes the learning levels and abilities of animals, but this is met
with difficulties (McNamara and Houston, 2009; Hammerstein
and Stevens, 2012; Fawcett et al., 2013; Lotem, 2013). Focusing
on situation specific actions does not help to understand the
effects of natural selection on behavioral rules because one focuses
on produced behavior and not the rules producing the behavior
(e.g., Dijker, 2011). In order to understand the dynamics and
evolution of learning mechanisms and other behavioral rules, an
evolutionary analysis thus has to consider explicitly the dynamics
of state variables on two timescales. First, one has to consider
the timescale of an individual’s lifespan; that is, the behavioral
timescale during which genetically encoded behavioral rules
produce a dynamic sequence of actions taken by the animal.
Second, there is the generational timescale, duringwhich selection
occurs on the behavioral rules themselves.

It is the behavioral timescale, where learning may occur, that
seems to be the most reluctant to be analyzed (Lotem, 2013). This
may stem from the fact that learning rules intrinsically encompass
constraints about the use of information and the expression of
actions (in the absence of unlimited powers of computation),
which curtails the direct application of standard optimality
approaches for studying dynamic behavior such as optimal control
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theory and dynamic programming. Indeed, the dynamics of even
the simplest learning rule, such as reinforcement learning by trial-
and-error, is hardly amenable to mathematical analysis without
simplifying assumptions and focusing only on asymptotics (Bush
and Mostelller, 1951; Norman, 1968; Rescorla and Wagner, 1972;
Börgers and Sarin, 1997; Stephens and Clements, 1998; but
see Izquierdo et al., 2007 for predictions in finite time).

Further, the difficulty of analyzing learning dynamics is
increased by two biological features that need to be taken
into account. First, varying environments need to be considered
because learning is favored by selection when the environment
faced by the individuals in a population is not absolutely fixed
across and/or within generations (Boyd and Richerson, 1985;
Rogers, 1988; Stephens, 1991; Feldman et al., 1996; Wakano
et al., 2004; Dunlap and Stephens, 2009). Second, frequency-
dependence needs to be considered because learning is likely to
occur in situations where there are social interactions between the
individuals in the population (Chalmeau, 1994; Hollis et al., 1995;
Villarreal and Domjan, 1998; Giraldeau and Caraco, 2000; Arbilly
et al., 2010, 2011b; Plotnik et al., 2011).

All these features taken together make the analysis of the evo-
lution of learning rules more challenging to analyze than standard
evolutionary game theory models focusing on actions or strate-
gies for constant environments (e.g., Axelrod and Hamilton, 1981;
Maynard Smith, 1982; Binmore and Samuelson, 1992; Leimar and
Hammerstein, 2001; McElreath and Boyd, 2007; André, 2010). Al-
though there has been some early studies on evolutionarily sta-
ble learning rules (Harley, 1981; Houston, 1983; Houston and
Sumida, 1987; Tracy and Seaman, 1995), this research field has
only recently been reignited by the use of agent-based simula-
tions (Großet al., 2008; Josephson, 2008; Hamblin and Giraldeau,
2009; Arbilly et al., 2010, 2011a,b; Katsnelson et al., 2011). It is
noteworthy that during the gap in time in the study of learning
in behavioral ecology, the fields of game theory and economics
have witnessed an explosion of theoretical studies of learning dy-
namics (e.g., Jordan, 1991; Erev and Roth, 1998; Fudenberg and
Levine, 1998; Camerer and Ho, 1999; Hopkins, 2002; Hofbauer and
Sandholm, 2002; Foster and Young, 2003; Young, 2004; Sandholm,
2011). This stems from an attempt to understand how humans
learn to play in games (e.g., Camerer, 2003) and to refine static
equilibrium concepts by introducing dynamics. Even if such mo-
tivations can be different from the biologists’ attempt to under-
stand the evolution of animal behavior, the underlying principles
of learning are similar since actions leading to high experienced
payoffs (or imagined payoffs) are reinforced over time.

Interestingly, mathematicians and game theorists have also de-
veloped tools to analytically approximate intertwined behavioral
dynamics, in particular stochastic approximation theory (Ljung,
1977; Benveniste et al., 1991; Fudenberg and Levine, 1998; Benaïm
and Hirsch, 1999a; Kushner and Yin, 2003; Young, 2004; Sand-
holm, 2011). Stochastic approximation theory allows one to ap-
proximate byway of differential equations discrete time stochastic
learning processes with decreasing (or very small) step-size, and
thereby understand qualitatively their dynamics and potentially
construct analytical models for the evolution of learning mecha-
nisms. This approach does not seem so far to have been applied in
evolutionary biology.

In this paper, we analyze by means of stochastic approxi-
mation theory an extension to fluctuating social environments
of the experience-weighted attraction learning mechanism (EWA
model, Camerer and Ho, 1999; Ho et al., 2007). This is a paramet-
ric model, where the parameters describe the psychological char-
acteristics of the learner (memory, ability to imagine payoffs of
unchosen actions, exploration/exploitation inclination), andwhich
encompasses as a special case various learning rules used in evolu-
tionary biology such as the linear operator (McNamara and Hous-
ton, 1987; Bernstein et al., 1988; Stephens and Clements, 1998),

relative payoff sum (Harley, 1981; Hamblin and Giraldeau, 2009)
and Bayesian learning (Rodriguez-Gironés and Vásquez, 1997;
Geisler and Diehl, 2002). We apply the EWA model to a situation
where individuals facemultiple periods of interactions during their
lifetime, andwhere each period consists of a game (like a prisoner’s
dilemma game, a Hawk–Dove game), whose type changes stochas-
tically according to an environmental process.

The paper is organized in three parts. First, we define themodel
and derive by way of stochastic approximation theory a set of
differential equations describing action play probabilities out of
which useful qualitative features about learning dynamics can be
read. Second, we use the model to compare analytical and simula-
tion results under some specific learning rules. Finally, we derive
an evolutionary model for patch foraging in a producer–scrounger
context, where both evolutionary and behavioral time scales are
considered.

2. Model

2.1. Population

We consider a haploid population of constant size N . Although
we are mainly interested in investigating learning dynamics, we
endow for biological concreteness the organisms with a simple
life cycle. This is as follows. (1) Each individual interacts socially
with others repeatedly and possibly for T time periods. (2) Each
individual produces a large number of offspring according to
its gains and losses incurred during social interactions. (3) All
individuals of the parental generation die and N individuals from
the offspring generation are sampled to form the new adult
generation.

2.2. Social decision problem in a fluctuating environment

The social interactions stage of the life cycle, stage (1), is the
main focus of this paper and it consists of the repeated play of
a game between the members of the population. At each time
step t = 1, 2, . . . , T , individuals play a game, whose outcome
depends on the state of the environment ω. We denote the set
of environmental states by Ω , which could consist of good and
bad weather, or any other environmental biotic or abiotic feature
affecting the focal organism. The dynamics of environmental states
{ωt}

T
t=1 is assumed to obey a homogeneous and aperiodic Markov

Chain, and we write µ(ω) for the probability of occurrence of
state ω under the stationary distribution of this Markov Chain
(e.g., Karlin and Taylor, 1975; Grimmett and Stirzaker, 2001).

For simplicity, we consider that the number of actions stays
constant across environmental states (only the payoffs vary), that
is, at every time step t , all individuals have a fixed behavioral
repertoire that consists of the set of actions A = {1, . . . ,m}.
The action taken by individual i at time t is a random variable
denoted by ai,t , and the action profile in the population at time
t is at = (a1,t , . . . , aN,t). This process generates a sequence of
action profiles {at}Tt=1. The payoff to individual i at time t when
the environment is in state ωt is denoted πi(ai,t , a−i,t , ωt), where
a−i,t = (a1,t , . . . , ai−1,t , ai+1,t , . . . , aN,t) is the action profile of
the remaining individuals in the population (all individuals except
i). Note that this setting covers the case of an individual decision
problem (e.g., a multi-armed bandit), where the payoff πi(ai,t , ωt)
of individual i is independent of the profile of actions a−i,t of the
other members of the population.

2.3. Learning process

We assume that individuals learn to choose their actions in
the game but are unable to detect the current state ωt of the
environment. Each individual is characterized by a genetically



Download English Version:

https://daneshyari.com/en/article/4502367

Download Persian Version:

https://daneshyari.com/article/4502367

Daneshyari.com

https://daneshyari.com/en/article/4502367
https://daneshyari.com/article/4502367
https://daneshyari.com

