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a b s t r a c t

We analyze how temporal variability in local demography and dispersal combine to affect the rate of
spread of an invading species. Our model combines state-structured local demography (specified by an
integral or matrix projection model) with general dispersal distributions that may depend on the state
of the individual or its parent. It allows very general patterns of stationary temporal variation in both
local demography and in the frequency and distribution of dispersal distances. We show that expressions
for the asymptotic spread rate and its sensitivity to parameters, which have been derived previously for
less general models, continue to hold. Using these results we show that random temporal variability in
dispersal can accelerate population spread. Demographic variability can further accelerate spread if it
is positively correlated with dispersal variability, for example if high-fecundity years are also years in
which juveniles tend to settle further away from their parents. A simple model for the growth and spread
of patches of an invasive plant (perennial pepperweed, Lepidium latifolium) illustrates these effects and
shows that they can have substantial impacts on the predicted speed of an invasion wave. Temporal
variability in dispersal has received very little attention in both the theoretical and empirical literature
on invasive species spread. Our results suggest that this needs to change.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Invasive organisms are ‘‘altering the world’s natural commu-
nities and their ecological character at an unprecedented rate’’
(Mack et al., 2000, p. 706), and often have substantial impacts on
the structure and function of the ecosystem (Simberloff, 2011).
Troublesome invasives in our current home states include zebra
mussels, emerald ash borer, giant hogweed, avocado thrips, and
smooth cordgrass (Spartina).

Spatial models of population spread have a potentially impor-
tant role in evaluating and designing strategies for preventing or
slowing the spread of invasive species (e.g., Taylor and Hastings,
2004; Grevstad, 2005; Jongejans et al., 2008; Bogich et al., 2008;
Epanchin-Niell and Hastings, 2010). For well-studied species, sim-
ulationmodels allow detailed demographicmodeling and accurate
representations of landscape structure (e.g., Higgins et al., 2000;
Jongejans et al., 2008; Andrew and Ustin, 2010; Minor and Gard-
ner, 2011). But simple ‘‘strategic’’ models (such as deterministic or
stochastic matrix models) have often been useful for identifying
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the life stages or demographic processes that are the best targets of
opportunity formanagement efforts to preserve a native species or
control an invasive (e.g., Shea and Kelly, 1998; Heppell et al., 2000;
Morris and Doak, 2002; Lande et al., 2003; Shea and Kelly, 2004;
Shea et al., 2010). Sensitivity analysis of the long-term population
growth rate λ, or of the long-term population spread rate c∗, has
often been a key tool in these applications.

In a seminal paper Kot et al. (1996) showed how integrodif-
ference equations could be used to model realistic patterns of or-
ganism redistribution (e.g., long-tailed distributions rather than
the Gaussian spread that results from classical reaction–diffusion
models), and gave a simple expression for the asymptotic rate of
population spread. They found that long-tailed dispersal distribu-
tions can give faster rates of spread than a Gaussian distribution
with the same mean square displacement. This has been proposed
as a resolution of ‘‘Reid’s Paradox’’, the rapid northward advance
of tree species after the last glacial retreat (Clark, 1998). The anal-
ysis by Kot et al. (1996) was quickly extended to include temporal
variability in local population growth (Neubert et al., 2000), demo-
graphic stochasticity (Lewis, 2000), discrete stage structure (Neu-
bert and Caswell, 2000), and two-dimensional spread (Lewis et al.,
2006). Two recent extensions are models with continuous popula-
tion structure (Jongejans et al., 2011) and models that combine
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discrete stage structure and demographic variability (Schreiber
and Ryan, 2011; Caswell et al., 2011). Caswell et al. (2011) also pro-
vide formulas for sensitivity analysis of the long-term population
spread rate for periodic or stochastic environmental variation.

Here we take two additional steps. The first is the natural step
of combining demographic variability with continuous population
structure, using the formalism of integral projection models. The
second is to analyze the effects of an ecologically important aspect
of population spread that has received surprisingly little attention
in previous work: temporal variability in dispersal. Empirical
evidence is very limited, but suggests that the frequency and
range of long-distance dispersal can vary greatly from one year
to the next (Andrew and Ustin, 2010). The general formulas
for population spread rate and its sensitivity in models with
temporal variability (Neubert et al., 2000; Schreiber and Ryan,
2011; Caswell et al., 2011) allow for temporal variability in both
local demography and dispersal, but previous to this paper there
has not been (to our knowledge) a mathematical analysis of
how dispersal variability can affect the rate of population spread.
However, a recent numerical study by Seo and Lutscher (2011) did
examine periodic fluctuations in dispersal rates for populations
with sedentary and randomly diffusing individuals. They found
that fluctuations in dispersal rates could increase or decrease rates
of spatial spread depending on temporal correlations between
dispersal and demography. To better understand these and other
interactions between demography and dispersal on population
spread, we analyze three forms of variability, separately and in
combination: temporal variation in local demographic parameters
(e.g. survivorship and fertility), a single mode of dispersal whose
parameters (e.g., mean dispersal distance) vary over time, and
multiple modes of dispersal (e.g., local wind dispersal and long-
range animal dispersal) whose frequencies vary over time.

Our analysis reveals that the effects of dispersal variability
can be very different from those of demographic variability. A
classical (Lewontin and Cohen, 1969) and very general result
(Tuljapurkar, 1990; Ellner and Rees, 2009) is that temporally
uncorrelated demographic variability reduces population growth
and spread rates (Lewis, 2000; Clark et al., 2001; Schreiber
and Ryan, 2011; Caswell et al., 2011). In contrast, we find
that temporally uncorrelated dispersal variability can increase
the rate of population spread. Moreover, when dispersal is
variable rather than constant, the effect of demographic variability
can be reversed: demographic variability that by itself would
decrease population growth and spread rate can instead increase
those rates, if it is correlated with dispersal variability. These
general results are all derived by perturbation analysis for small
fluctuations, but we also provide a simple geometric explanation
for the effect of dispersal variability. We then use an empirically-
based model for the spread of an invasive plant (perennial
pepperweed) to show that our results continue to hold at
very high levels of variability and that dispersal variability and
dispersal–demography covariance can have appreciable effects on
population spread rate.

2. Model and assumptions

We consider a continuously structured population in which
the state z of an individual (e.g. size or age) lies in a compact
set of all possible individual states Z (Ellner and Rees, 2006).
These individuals disperse along a one dimensional transect of
their environment (however, rates of spread in a two dimensional
region can be computed by ‘‘marginalizing’’ a two-dimensional
dispersal kernel along the direction of interest Lewis et al., 2006).
Consequently, the location x of an individual can be identified
with a point on the line X = (−∞, ∞). Let nt(x, z) denote the
population density at location x, state z, and time t . In the absence

of density dependence (which we will consider in Section 4), the
most general form of the model is

nt+1(x, z) =


Kt(x, z, x0, z0)nt(x0, z0)dx0dz0 (1)

where x is location, z is individual state, nt(x, z) is the population
distribution in space and state at time t, Kt is the kernel for year
t , and the integral runs over the spatial domain X = (−∞, ∞)
and the (compact) set of possible individual states Z. The kernel
Kt(x, z, x0, z0) represents the rate at which individuals in state z0
and location x0 at time t produce individuals in state z and location
x at time t . It includes changes in individual state, changes in
location, and production of new offspring which may vary in state
and location. We will often write nt+1 = Ktnt as a shorthand for
Eq. (1), and similarly for other kernels.

Consistent with prior studies (Kot et al., 1996; Neubert and
Caswell, 2000; Neubert et al., 2000; Jongejans et al., 2011;
Caswell et al., 2011; Schreiber and Ryan, 2011), we assume spatial
homogeneity. In particular, state transition rates are the same at
all locations, so our model incorporates temporal variability in
environmental conditions but not spatiotemporal variability, and
movement probability is a function of the distance between the
starting and ending locations. That is,

Kt(x, z, x0, z0) = Kt(x − x0, z, z0), with
Kt(v, z, z0) = Kt(−v, z, z0). (2)

Within that constraint, however, the dispersal pattern can depend
on individual state in any way, in principle. Any constraints on
movement dictated by the species’ life history is reflected in the
structure of the kernel. For example, if new offspring undergo natal
dispersal (e.g., seeds or larvae) but then settle for the rest of their
life (e.g., trees, corals), the kernel has the form

Kt(v, z, z0) = δ0(v)Pt(z, z0) + kd,t(v)Ft(z, z0) (3)

where δ0 is the Dirac delta-function (a unit mass at v = 0), F and P
are the fecundity and survival/growth kernels respectively, and kd,t
is the juvenile dispersal kernel that describes the displacements
of offspring from their parent. Without loss of generality we
assume that kd,t is a probability distribution, i.e., that any offspring
mortality prior to establishment is absorbed into F .

To ensure that invasion speeds are well-defined, we need
several additional assumptions. First, we assume that dispersal
events have exponentially bounded tails. More precisely, we
assume that the transformed kernels

Hs,t(z, z0) =


Kt (v, z, z0) esvdv (4)

are finite with probability 1 for all s in some interval (−s1, s1);
the interval is symmetric because of our spatial homogeneity
assumption. In the case of juvenile dispersal, Eq. (3), the
transformed kernels are

Hs,t = Pt + Mt(s)Ft (5)

where Mt is the moment-generating function of kd,t . In Eqs. (4)
and (5), s characterizes the shape of the invasion wave, and the
kernels Hs,t determine the spread rate for an invasion wave where
total population density decreases exponentially at rate s as a
function of distance from the population center (Appendix A).
Without an exponentially bounded tail, the rate of spatial spread
may constantly accelerate, so there is no asymptotic invasion speed
(Kot et al., 1996).

Second, we assume that for all s in (−s1, s1), the temporal
sequence of transformed kernels {. . .Hs,−1,Hs,0,Hs,1, . . .} are
stationary, ergodic and satisfy the assumptions of Ellner and
Rees (2007) for stochastic integral projection models. Stationarity
means that the pattern of temporal variability in the environment



Download English Version:

https://daneshyari.com/en/article/4502423

Download Persian Version:

https://daneshyari.com/article/4502423

Daneshyari.com

https://daneshyari.com/en/article/4502423
https://daneshyari.com/article/4502423
https://daneshyari.com

