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Source-sink systems are metapopulations of patches with different, and possibly temporally varying,
habitat qualities, which are commonly used in ecology to study the fate of spatially extended populations.

We propose new techniques that disentangle the respective contributions of demography and
dispersal to the dynamics and fate of a single species in a source-sink system. Our approach is valid
for a general class of stochastic, individual-based, stepping-stone models, with density-independent
demography and dispersal, provided that the metapopulation is finite or else enjoys some transitivity
property.

We provide (1) a simple criterion of persistence, by studying the motion of a single random disperser
until it returns to its initial position; (2) a joint characterization of the long-term growth rate and of the
asymptotic occupancy frequencies of the ancestral lineage of a random survivor, by using large deviations
theory. Both techniques yield formulas decoupling demography and dispersal, and can be adapted to the
case of periodic or random environments, where habitat qualities are autocorrelated in space and possibly
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in time.

In this last case, we display examples of coupled time-averaged sinks allowing survival, as was
previously known in the absence of demographic stochasticity for fully mixing (Jansen and Yoshimura,
1998) or partially mixing (Evans et al., 2012; Schreiber, 2010) metapopulations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Ecological background

Metapopulation models (Hanski and Gilpin, 1997) are models of
population dynamics where the spatial structure is explicit. They
are used to infer the processes which have shaped contemporary
range distributions, to predict migration trends or invasion fronts
in response to biotic or abiotic changes, to understand the evolu-
tion of dispersal, to design protected areas and natural reserves,
etc. When the landscape is heterogeneous in terms of habitat suit-
ability, even the mere question of predicting persistence can be
a complicated task, since persistence is the result of the intricate
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interplay between population growth in suitable habitats, popula-
tion depletion in unsuitable habitats and of how dispersal connects
different habitat patches.

In ecology, metapopulation models where habitat suitability is
spatially heterogeneous are commonly referred to as source-sink
systems (Dias, 1996; Holt, 1985; Pulliam, 1988). Roughly speaking,
even if the definition of sources and sinks have been subject to de-
bate (Pulliam, 1988; Runge et al., 2006), sources designate habitat
patches where the habitat is suitable enough for the population to
persist in the absence of dispersal (fundamental niche), and sinks
are habitat patches where the population would become extinct
in the absence of dispersal, or from which mortality during dis-
persal is too high to compensate growth. Spatial heterogeneity can
be due to biotic environmental variables (predation risk, resource
availability) or to abiotic environmental variables, which can either
be constant through time (altitude or depth, latitude) or variable
through time (precipitation, moisture, irradiance, pH, salinity).

To study the persistence of a single species in a metapopulation,
it is common to further assume that population dynamics are
density-independent. This assumption does certainly not hold for
all natural populations, but can at least be used for populations
whose persistence is guaranteed whenever their abundance is
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large enough to make this approximation unrealistic. It is also
particularly relevant when asking about the establishment success
of a new variant arising in few copies (immigrants, genetic
mutants, infectives).

The assumption of density-independence allows theoretical
ecologists to make use of linear models: matrix population models
(Caswell, 2001) for deterministic dynamics and multitype branch-
ing processes (Asmussen and Hering, 1983; Athreya and Ney,
2004; Haccou et al., 2007; Jagers, 1975) for stochastic dynamics.
These models are parsimonious in the number of parameters, and
the associated mathematical theory is extremely well developed.
The extinction probability has a very simple power dependence
upon initial population size and composition, and under suitable
assumptions, conditional on long-term survival, the geographic
distribution of the population stabilizes over time, whereas its
overall abundance grows exponentially with an exponent called
the Malthusian growth rate, or long-term growth rate, or simply
growth rate. In addition, the stable geographic distribution and the
long-term growth rate are solutions to a well-known spectral prob-
lem. Namely, the growth rate is the maximal eigenvalue of the
mean offspring matrix (encompassing both demography and dis-
persal), and the stable distribution is an associated eigenvector (Li
and Schneider, 2002; Seneta, 2006).

A lot of work has been dedicated to extend these results to
more complicated situations, like infinite metapopulations (Metz
and Gyllenberg, 2001), or, as earlier stressed, because spatial het-
erogeneity can itself be time-variable, to multitype branching
processes in random environment (Athreya and Karlin, 1971b,a;
Benaim and Schreiber, 2009; Haccou and Iwasa, 1996; Haccou
and Vatutin, 2003; Kaplan, 1974; Tanny, 1977). More ecologically-
related work has investigated in which dispersal strategies are
more likely to persist in metapopulations with random environ-
ment (Gonzalez and Holt, 2002; Schreiber, 2010; Schreiber and
Lloyd-Smith, 2009), which such metapopulations are more prone
to persistence (Bascompte et al., 2002), and which introduction
strategies are more successful (single large vs. several small) (Hac-
cou and Vatutin, 2003; Wilcox and Murphy, 1985). Specific at-
tention has been given to coupled sinks, that is, metapopulations
where each habitat patch is a (time-averaged) sink, but where pop-
ulations might still persist thanks to dispersal in sparse favorable
periods (Evans et al., 2012; Jansen and Yoshimura, 1998; Roy et al.,
2005; Schreiber, 2010).

1.2. Goals and outline of the paper

In the present paper, we develop new methods in order to
disentangle the contributions of demography and dispersal to
the dynamics and outcome of source-sink systems with possibly
varying environment. We are interested in criteria for global
persistence and in the computation of the long-term growth rate,
and of the occupation frequencies of long-lived lineages.

One of the main problems of the spectral approach to the
study of metapopulations is that the computation of eigenvalues
and eigenvectors is totally opaque to biological interpretation.
In particular, the respective contributions of dispersal and
demography to the value of the long-term growth rate are very
hard, if not impossible in general, to disentangle. As regards the
question of persistence, we could ask for an alternative criterion,
equivalent to, but simpler than, the positivity of this growth rate,
which would avoid computing directly this eigenvalue. Similarly as
in Evans et al. (2012), Hastings and Botsford (2006), Krkosek and
Lewis (2010), Runge et al. (2006) and Schreiber and Lloyd-Smith
(2009), we seek initially to provide such an alternative criterion.

For example, in (st)age-structured models, it is easy to com-
pute the net reproductive number Ry, which is the expected to-
tal progeny produced in the lifetime of a single individual. Then

thanks to a simple renewal argument, the condition Ry > 1is seen
to be equivalent to possible survival. More rigorously, the set of
juvenile offspring of a focal juvenile ancestor forms what is called
a stopping line, for which it is known that an extended branching
property holds (Chauvin, 1986). This idea of the next generation-
stopping line has been adapted to the spatial context in Krko3ek
and Lewis (2010) and Runge et al. (2006), but remains of limited
applicability. In the first part of this work, the key idea is to use
as an alternative stopping line the set of descendants of a focal an-
cestor who are the first to return to the ancestor patch. Then by the
extended branching property, the population persists with positive
probability if and only if the expected number, say G, of individuals
on the stopping line is larger than one.

If, as we first assume, the dispersal scheme does not depend on
the state of the environment, then G can be expressed separately
in terms of the mean offspring numbers in each patch (and in
each environmental state) and of the motion of a single random
disperser. More specifically, a random disperser is an individual on
the metapopulation which follows the dispersal stochastic scheme.
We denote by X;, its position at time n so that (X;,) is a Markov chain
with transitions given by the dispersal matrix which is denoted by
D. In the case when the environment is constant, we let m; denote
the mean number of offspring begot per individual dwelling in
patch i, which includes survival during one time-step, regardless
of migration. We prove that

T—1
G=mE <l—[ mxn) s
n=1

where T is the first time the random disperser returns to patch
1 (assumed to be the initial patch), which is well defined under
some irreducibility assumption. The population persists with
positive probability if and only if G > 1. It is worth noting
that under the irreducibility assumption, the criterion G; >
1 does not depend on the initial patch i. Thus, G; > 1 if
there exists some supercritical dynamics somewhere in the graph
of the metapopulation, which ensures persistence with positive
probability. This way, our formulas are seen to disentangle the
effects of demography and dispersal. If all other habitat patches
than patch 1 have the same mean offspring m, then the last equality
specializes into

G=mE(m'"),

where the expectation in the last display can now be seen as
the probability generating function of the random variable T — 1
evaluated at m. We also compute this expectation in some special
cases of interest.

In a second part, we use large deviations techniques to prove
that the logarithm of the long-term growth rate p and the
asymptotic fraction (¢;) of time spent in each patch of the
ancestral lineage of a random survivor are given respectively by
the maximum and the unique argmax of a functional R — I defined
on the set

F={(i:1<i<K):fi=0, fi+---+fx =1}

of frequencies indexed by the metapopulation, where K is the
number of patches, R only depends on the reproduction/survival
scheme and I only depends on the dispersal scheme. Our second
formula also decouples the demography and dispersal. Namely,
denotingf = (fi : 1 <i <K),

log(p) = sup{R(f) —I(f) : f € F} =R(p) — 1(9),
where R is a linear functional of frequencies only depending on the
mean offspring numbers in each patch

R() =Y filog(m),
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