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a b s t r a c t

Wederive the frequency-dependent selection coefficient caused by ‘‘demographic’’ stochasticity resulting
from the random sampling of opponents an individual faces during behavioral ‘‘contests’’ with other
individuals. The mean, variance, and higher moments of fitness all influence the direction and strength
of selection. A frequency-dependent trait can be stable when an individual’s fitness depends upon an
infinite number of contests with other individuals and unstable when it depends upon a finite number of
contests. Conversely, unstable equilibria for an infinite number of contests can be stable when there is a
finite number of contests. At stable equilibria for a finite number of contests, highermoments of fitness can
outweigh the joint influence of the first twomoments so that natural selection favors ‘‘within-generation’’
or developmental-trait variation (also known as phenotypic plasticity) contrary to the claim that natural
selection always acts against such variation. We use second-moment estimates of the fitness functions
in a diffusion approximation to compute fixation probabilities of competing strategies. These estimates
are shown to be qualitatively consistent with those derived from simulations when population sizes are
sufficiently large to ignore the contribution of higher-moment terms.We also show that explicit solutions
to the diffusion approximation only exist for pair-wise interactions that lead to positive frequency-
dependent selection.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Competition for mates (Maynard Smith and Price, 1973; Parker,
1978), intersexual conflict (Petrie and Lipsitch, 1994; Mokkonen
et al., 2011), parent–offspring conflict (Trivers, 1974; Haig, 1992),
and competition for resources (Hammerstein, 1981; Riechert and
Hammerstein, 1983;Milinski, 1984) occur inmany species. In such
competitive ‘‘games’’, the fitness of a strategy is often influenced
by the frequency of other strategies in the population, instead of
being constant. This is an instance of phenotype plasticity since
the phenotype of an individual is environment-specific rather than
constant (see also Smead and Zollman, 2009).

Theoretical analyses of competitive games include the
Hawk–Dove game, which describes competition between aggres-
sive and passive behavioral strategies (Maynard Smith and Price,
1973; Maynard Smith, 1982), and the Prisoner’s Dilemma game
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(Axelrod and Hamilton, 1980), which describes competition be-
tween altruistic and selfish strategies. For two strategies, A and B,
the pay-offs from pair-wise contests are

G =


GAA GAB
GBA GBB


=


a b
c d


, (1)

where Gij is the pay-off to an individual of strategy i in a contest
with an individual of strategy j. For example, in the Hawk–Dove
game if we denote Hawk as type A and Dove as type B, the pay-
off to a Hawk in an encounter with a Dove (b) is greater than that
in an encounter with another Hawk (a), and a Dove does better
in an encounter with another Dove (d) than with a Hawk (c). The
same inequalities apply for selfish and altruistic individuals in the
Prisoner’s Dilemma game.

Most analyses of evolutionary games have identified stable
equilibria using the concept of the evolutionarily stable strategy
(ESS sensu Maynard Smith and Price, 1973; Taylor and Jonker,
1978; Maynard Smith, 1982, Hines, 1987). An ESS is a ‘‘resident’’
strategy that resists invasion by a rare mutation (see extensions of
evolutionary stability by Hofbauer and Sigmund, 1998; Metz et al.,
1996). Most of this work has the assumption that the population
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size and the number of contests each individual has with other in-
dividuals are infinite. When the number of contests is finite, vari-
ance of viability or reproduction at any given time can arise as
a consequence of the random sampling of opponents. The influ-
ence of such ‘‘demographic’’ stochasticity (Shaffer, 1981, p. 131)
on population and evolutionary dynamics has been long studied
(e.g., Kendall, 1949; Bartlett, 1960; Macarthur and Wilson, 1967;
Levins, 1969; Richter-Dyn and Goel, 1972; May, 1973; Shaffer,
1981; Lande, 1993; Lande et al., 2003).

Demographic stochasticity differs from genetic drift as de-
scribed by the Fisher–Wright model (Gillespie, 1974, 1975, 1977)
in that the former involves a finite gene pool to which contribu-
tions of each genotype differ because of variation in survival and
reproduction among individuals, while the latter involves finite,
non-proportional sampling of alleles from an infinite gene pool.
Demographic stochasticity occurswhen the fitnesses (net offspring
number) of individuals of the same genotype differ at any given
time, while genetic drift occurs as a result of stochastic sampling
from a pool of gametes or offspring when the fitnesses of individ-
uals of the same genotype are equal at any given time.

Our understanding of the role of demographic stochasticity in
evolution remains incomplete in large part because its influence on
frequency-dependent selection is not completely understood. This
context is arguably themost important one inwhich to understand
the influence of demographic stochasticity because such selection
is a typical feature of behavioral contests, which are ubiquitous in
nature (see above). Only a handful of studies (e.g. Proulx, 2000;
Calsbeek et al., 2001; Orzack and Hines, 2005; King and Masel,
2007) have explicitly considered the evolutionary consequences
of demographic stochasticity arising from the formation of con-
tests, and their analyses are only partial. (Other researchers have
analyzed the influence of genetic drift arising from the random
sampling of offspring resulting from contests, without considering
the effects of demographic stochasticity induced by finite contests;
e.g., see Nowak and Sigmund, 1990; Fogel et al., 1997; Bergstrom
and Godfrey-Smith, 1998; Ficici and Pollack, 2000; Nowak et al.,
2004; Wild and Taylor, 2004; Lessard, 2005; Altrock and Traulsen,
2009; Hashimoto and Aihara, 2009; Zhou et al., 2010.)

Here, we further analyze the consequences of this form of
demographic stochasticity on the evolutionary dynamics and
statics of frequency-dependent natural selection.

1.1. Overview

We analyze the variance in fitness (defined as net offspring pro-
duction) caused by random sampling of opponent pairs in evolu-
tionary games. In Section 2, we derive the stochastic fitness of a
strategy given pairwise contests, both as an exact function of the
sampling probabilities and in large populations via a samplingwith
replacement approximation. In Section 3 we apply these results to
compute the exact fitness differences between two evolutionary
strategies and illustrate numerically how deterministic equilibria
predicted by evolutionary game theory are not necessarily stable
in finite populations. We also show that in sufficiently small pop-
ulations, first- and second-moment approximations to the fitness
function need not correctly predict the direction of selection, and
that strategies with higher demographic stochasticity can be fa-
vored by selection. In Section 4 we analyze the fixation probabili-
ties (global dynamics) for evolutionary games in finite populations
using a diffusion approximation to the expected change and vari-
ance in fitness under the assumptions of weak selection and large
population size. In Section 5, we compare these estimates to those
derived from individual-based simulations.

2. Demographic stochasticity in frequency-dependent contests

Consider a population of haploid asexual organisms in which
the frequency of a genotype with strategy A is p and the frequency

of a genotype with strategy B is 1− p. The pay-offs from individual
contests are given by Eq. (1). Henceforth, we use the term ‘‘strat-
egy’’ when referring to a genotype. Assuming infinite contests, the
average fitness for each strategy is

E[WA] = ap + b(1 − p), (2a)
E[WB] = cp + d(1 − p). (2b)

In an infinite population with infinite contests, the dynamics and
statics of strategy frequency are determined entirely by E[WA] and
E[WB].

With pairwise evolutionary contests, the ‘‘realized’’ fitness of a
particular individual is a random variable. In the case of an indi-
vidual of type A,WA = awith probability p, bwith 1− p (whereas
for B,WB = c with probability p, d with probability 1 − p). If both
the population size and number of contests are infinite, then the
realized average fitness W A,W B of strategies A, B are equal to the
values given by Eqs. (2a) and (2b), otherwise, we must distinguish
between the realized average fitness of a strategy and its expected
fitness.

Consider a finite population of N individuals that meet once in
the contest phase of a life cycle; x are of typeA. The realized average
fitnesses W A,W B of individuals of type A, B are now random
variables and depend on the number of contests. For example, if
k is the number of A/A contests, there will be x − 2k A/B contests
and (N − 2x+ 2k) B/B contests. Since k is itself a random variable,
the realized average fitness for the two strategies are

W A = a
2k
x

+ b
x − 2k

x
, (3a)

W B = c
x − 2k
N − x

+ d
N − 2x + 2k

N − x
. (3b)

It follows that the realized average population fitness is

W = p W A + (1 − p)W B. (3c)

To find the expected average fitnesses (and higher moments)
for the two strategies, we must derive a pairing distribution P(k).
We assume that N is even so that every individual is paired (if
there is an odd number of individuals, one can account for the
remaining individual, either by, say, having it not contribute to the
gene pool or by allowing for a double pairing). The probability of
having exactly k A/A pairs given x strategy A individuals and N − x
strategy B individuals is

P(k) =


N/2
k


N/2 − k
x − 2k



N
x

 2x−2k, (4)

for max(0,N − x/2) ≤ k ≤ x/2, with P(k) = 0 otherwise.
To derive Eq. (4), consider a random sequence of x individuals of

type A and N −x individuals of type B. There are a total of

N
x


ways

to order the A’s and B’s in this sequence. Assume that contest pairs
are the N/2 adjacent, non-overlapping pairs of individuals in this
sequence, of which k are A/A. We have


N/2
k


possible positions for

A/A pairs, which leaves N/2 − k pairs that are either A/B or B/B.
The number of A/B pairs is x − 2k, so there are


N/2 − k
x − 2k


possible

orderings of A/B’s. Finally, any pairing A/B is equivalent to B/A,
giving us 2(x−2k) possible orderings of individuals of type A and
B among the x − 2k A/B pairs. Analogous pairing problems arise
in estimating the distributions of homozygous and heterozygous
genotypes in finite diploid populations, contributing to deviations
from the Hardy–Weinberg equilibrium, e.g. Schraiber et al. (2012).
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