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In classical quantitative genetics, the correlation between the phenotypes of individuals with unknown
genotypes and a known pedigree relationship is expressed in terms of probabilities of IBD states. In
existing approaches to the inverse problem where genotypes are observed but pedigree relationships
are not, dependence between phenotypes is either modeled as Bayesian uncertainty or mapped to an IBD
model via inferred relatedness parameters. Neither approach yields a relationship between genotypic
similarity and phenotypic similarity with a probabilistic interpretation corresponding to a generative
model. We introduce a generative model for diploid allele effect based on the classic infinite allele
mutation process. This approach motivates the concept of IBF (Identity by Function). The phenotypic
covariance between two individuals given their diploid genotypes is expressed in terms of functional
identity states. The IBF parameters define a genetic architecture for a trait without reference to specific
alleles or population. Given full genome sequences, we treat a gene-scale functional region, rather than
a SNP, as a QTL, modeling patterns of dominance for multiple alleles. Applications demonstrated by
simulation include phenotype and effect prediction and association, and estimation of heritability and
classical variance components. A simulation case study of the Missing Heritability problem illustrates a

decomposition of heritability under the IBF framework into Explained and Unexplained components.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Correlation between pedigree and genotype relatives

Quantitative genetic models can be described as explaining
phenotypic resemblance between individuals on the basis of ge-
netic resemblance, that is, the expected or actual sharing of genes.
As we transition from pedigree information to full-sequence ge-
netic information, we change the way we pose a typical question in
quantitative genetics, inviting answers with conceptually incom-
patible probabilistic interpretations:

1. What is the correlation between the heights of an uncle and a
nephew?

2. What is the correlation between the heights of individual A,
with genotype g; and individual A, with genotype g,?

The first question has a well-studied interpretation. We can
sample n nominally unrelated uncle-nephew pairs from the pop-
ulation and compute their pairwise correlation. The second ques-
tion only becomes meaningful in the context of models where the
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set of genotypic effects, or the function mapping genotype to ex-
pected phenotype, is treated as random. The meaning of the cor-
relation is not reducible to an ideal sample from the population,
and is model dependent. The two major model classes have two
distinct interpretations: the purely Bayesian, reflected in the ge-
nomic selection (Meuwissen et al., 2001) and reproducing kernel
Hilbert spaces (Gianola and van Kaam, 2008) frameworks, and an
interpretation based on the inference of the parameters of classical
theory from genomic data (Visscher, 2009).

1.2. The three model classes

We can thus identify three distinct classes of quantitative ge-
netic models.

1. Classical theory answers the first question. It predicts the
expected fraction of genome shared between two individuals
under the principle of Identity by Descent (IBD), based on
their pedigree relationship, and maps this measure of genetic
similarity to a phenotypic correlation.

2. Several classes of Bayesian, or random effect, models answer
the second question on the principle of Identity by State (IBS).
The correlation is a function of the similarity between the
actual genotypes g; and g;, without reference to pedigrees and
descent.
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3. Hybrid models answer the second question by inferring relat-
edness parameters between A; and A, from genotype data, and
substituting these into the equations of classical theory. This ad-
mits neither a pure classical, nor a pure Bayesian interpretation.

1.3. Our alternative model

Our aim is to construct a model within which the second ques-
tion can be meaningfully asked with a probabilistic interpretation
in the non-Bayesian context of a population genetic process based
on the classical infinite allele model. The model is generative in the
sense of describing a joint distribution of genotypes and effects,
given parameters describing a population process and trait archi-
tecture.

We adapt the genetic architecture from Fisher (1918), additive
across loci but not within a locus, and treat alleles symmetrically,
from a neutralist perspective, as draws from an infinite allele
process. It is the need to reconcile this symmetry with diploidy
and dominance that makes the model mathematically nontrivial.
The result is a definition of correlation between two individuals’
phenotypes given their genotypes (question 2) with respect to
a population process. The thought experiment with respect to
which we define our correlation is a replay of evolution. Classically,
correlation is defined with respect to a repetition of the same
pedigree relationship. For our model, it is the draw of functionally
different alleles from the infinite allele process at the same
mutation events that gave rise to our observed genotypes.

The model allows for infinitely many alleles at each locus. This
is useful for full sequence genomic data, where we routinely en-
counter novel alleles. The model’s genetic architecture parameters
specify the relative importance of loci and the pattern of domi-
nance within a locus. These parameters are features of the muta-
tion process that creates alleles, not of individual alleles. They are
specific to a trait, but not to a particular population.

1.4. Quantitative trait locus scale and linkage disequilibrium

Our model treats a functional region, such as a gene, as a quan-
titative trait locus (QTL). Each (non-synonymous) sequence in that
region found in the population is an allele. This contrasts with
treating each minimal length unit of genomic variation, such as a
SNP or indel, as a QTL, as is the implicit practice in the GWAS or
whole exome (e.g. Kiezun et al., 2012) literature, and has analo-
gies to region-based association models such as SKAT (Wu et al.,
2011). In earlier QTL mapping methods based on sparse markers
and linkage analysis (e.g. Lynch and Walsh, 1998, Chapters 14-16),
the QTL was treated as a point along the chromosome and did not
need to be defined in sequence terms. Likewise, in the literature
related to the genomic relatedness matrix (e.g. Yang et al., 2010),
SNP’s used to compute kinship are described as markers in linkage
disequilibrium with point causal variants. For complete genome or
dense SNP (e.g. 1 million SNP’s for the human genome, approach-
ing 50 per gene) genotype data, the point abstraction runs into
difficulties. Marker SNP’s may be inside exons and causal, and mul-
tiple markers may occur within the same causal gene. The question
of whether these multiple markers should be treated as separate
QTL’s cannot be avoided. In the GWAS context, it is typical for mul-
tiple SNP’s in or near a gene to be associated with a trait. Meth-
ods extending GWAS approaches to polygenic traits (e.g. Guan
and Stephens, 2011) treat this as a variable selection problem, as
though only a single SNP per functional region is causal, and the
other SNP’s in LD with the causal SNP are a nuisance and a source
of collinearity. This solution is practical, but restricts the biological
effects that can be modeled at gene scale.

We leave outside the scope of this paper the question of defin-
ing the boundaries of a biological functional region, and the com-
plication of overlapping genes; we will use the terms gene and
functional region interchangeably. From a gene-as-QTL perspec-
tive, every new mutation is likely to create a novel gene-scale
haplotype, implying an infinite allele population model. From a
SNP-as-QTL perspective, every new mutation is likely to target a
new SNP at a different base pair location, implying a diallelic, in-
finite sites model. In SNP-as-QTL, multiple nearby SNP’s that oc-
cur together in non-random patterns to form functional sequences
must be accounted for as linkage disequilibrium (LD), and their
action should be expected to exhibit epistasis. The simplest
consequence of switching from SNP-as-QTL to gene-as-QTL is re-
ducing the importance of short-range (within-gene) LD and epis-
tasis, introducing instead greater scope for dominance phenomena
through the interaction of many alleles. Consider an extreme ex-
ample, two SNPs within one codon: [C/A]G[A/T]. The ancestral
sequence CGA codes for Arginine, as does either individual SNP
mutation, CGT or AGA. However, the two SNP’s together, AGT, code
for Serine. If we treat the two SNP’s as separate QTL's, we would
expect both LD and epistasis in any trait affected by this sequence.
If, alternatively, we treat the whole codon as a single QTL, there are
simply four possible alleles with different frequencies and effects.

The ideal conditions of the classical (Cockerham, 1954;
Kempthorne, 1954) decomposition of genetic covariance into vari-
ance component terms include an unlinked set of quantitative trait
loci, linkage equilibrium, and the absence of mutation and selec-
tion. To reconcile quantitative genetic models with genomic data,
we must define QTL on a scale which best fits the classical ap-
proximation. Unlike the gene-as-QTL approach, the SNP-as-QTL
approach conflicts with the ideal conditions by requiring either the
violation of linkage equilibrium or the introduction of mutation or
selection. When two SNP-scale loci are part of the same functional
region, it is biologically plausible that they are in LD. LD between
linked, nearby loci decays under random mating due to recombi-
nation; but recombination within a functional region creates new
functional haplotypes (mutation) with varying phenotypic effects
(potential selection). In the gene-as-QTL approach, between-gene
LD may still occur; but within-gene LD is a phenomenon of the
choice of QTL scale, and need not be an issue in full sequence anal-
ysis.

2. Existing quantitative genetic models

For all of the three existing model classes we consider, we can
write the genotypic value as G = g - f for a suitably encoded
genotype vector g and effect vector f. For the commonly used
additive model over diallelic SNP’s, the genotype vector is a vector
of minor allele dosages (0, 1, or 2) for each SNP locus, and the effect
the additive contribution to the trait per allele. For a more general
model, the genotype vector may contain a 0 or 1 as an indicator
for the genotype containing an arbitrarily complex combination of
alleles, with the most general possible model including a separate
indicator column for each possible genotype.

2.1. Type 1: Fisher’s classical polygenic model and identity by descent

In classical quantitative genetics as originated by Fisher (1918)
and presented in current form e.g. by Lynch and Walsh (1998),
the non-environmental component of randomness is due to the
unknown genotypes of the two individuals. Thus genotypes g are
random, and the effects f are fixed.

The genotypes are modeled as being sampled from the popula-
tion, with covariance between relatives due to the sharing of genes,
as expressed by the probabilities of the identity by descent (IBD)
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