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1. Introduction

Consider a population in which each individual is labelled D(x,0) =

ABSTRACT

A coalescent dual process for a multi-type Moran model with genic selection is derived using a
generator approach. This leads to an expansion of the transition functions in the Moran model and
the Wright-Fisher diffusion process limit in terms of the transition functions for the coalescent dual.
A graphical representation of the Moran model (in the spirit of Harris) identifies the dual as a strong
dual process following typed lines backwards in time. An application is made to the harmonic measure
problem of finding the joint probability distribution of the time to the first loss of an allele from the
population and the distribution of the surviving alleles at the time of loss. Our dual process mirrors
the Ancestral Selection Graph of [Krone, S. M., Neuhauser, C., 1997. Ancestral processes with selection.
Theoret. Popul. Biol. 51, 210-237; Neuhauser, C., Krone, S. M., 1997. The genealogy of samples in models
with selection. Genetics 145, 519-534], which allows one to reconstruct the genealogy of a random
sample from a population subject to genic selection. In our setting, we follow [Stephens, M., Donnelly, P.,
2002. Ancestral inference in population genetics models with selection. Aust. N. Z. ]. Stat. 45, 395-430] in
assuming that the types of individuals in the sample are known. There are also close links to [Fearnhead, P.,
2002. The common ancestor at a nonneutral locus. ]. Appl. Probab. 39, 38-54]. However, our methods and
applications are quite different. This work can also be thought of as extending a dual process construction
in a Wright-Fisher diffusion in [Barbour, A.D., Ethier, S.N., Griffiths, R.C., 2000. A transition function
expansion for a diffusion model with selection. Ann. Appl. Probab. 10, 123-162]. The application to the
harmonic measure problem extends a construction provided in the setting of a neutral diffusion process
model in [Ethier, S.N., Griffiths, R.C., 1991. Harmonic measure for random genetic drift. In: Pinsky, M.A.
(Ed.), Diffusion Processes and Related Problems in Analysis, vol. 1. In: Progress in Probability Series, vol.
22, Birkhduser, Boston, pp. 73-81].
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Wright-Fisher diffusion has a Dirichlet stationary distribution
o) o-1 g1

according to a type taken from the set [d] = {1,2,...,d}. We
write X;(t) for the frequency of type j individuals in the population

attimet > 0 and X(t) = (Xj(t))je[d] and model the evolution of
the population using a multi-type Wright-Fisher diffusion process.
In the simplest setting, there is no selection, and mutation between
types is parent independent. That is, each individual mutates to
type j at rate 6;/2 > O, independent of its current type. The

generator of the diffusion process is then
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where we use the notation |a] = Zj a; for the sum of elements

in a vector. If & > 0 (meaning that6; > O for allj € [d]) the
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for x > 0 and |x| = 1. More generally, one can allow some of
the 6; to vanish, in which case we obtain a generalized Dirichlet
distribution in which the corresponding frequencies x; vanish with
probability one. Ethier and Griffiths (1993) show that the transition
distribution of the diffusion can be expressed as a mixture,

P(t,x, ) =Y g/ (6) Y Mk, 0)D(, 0 +1), (2)
k=0
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where M(I; k, x) denotes the multinomial distribution,

i
M, x) = (l‘>xl; X =k,

and qlf‘(t) are the transition functions of a (dual) pure death

process which we denote by {L(t), t > 0}. This process should be
thought of as evolving in backwards time. Lineages are lost through
coalescence, through which k — k — 1 at rate k(k — 1)/2, and
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mutation, resulting in k — k — 1 at an additional rate k|0|/2. We
suppose that L(t) starts from infinity (although it will be finite at
any t > 0).If |#] = 0 this dual process is the number of blocks in
the famous Kingman coalescent (Kingman, 1982). The expansion
(2) still holds in this case, except that now we will have L(t) > 1
forallt > Oand so the summationisoverk > 1.There is an explicit
expression for the transition functions,

2+ 101 = DG+ 10D -1
3G — k!

where pj‘m(t) = e J0HOI=DI/2 (Griffiths, 1980; Tavaré, 1984;
Griffiths, 2006). To understand the expansion (2), one can think of
the infinite number of individuals that make up L(0) as the ‘leaves’
in a forest of trees. Each tree either grows from a ‘founder’ at time
t (which corresponds to time zero in the diffusion process) or its
root arose through a new mutation. This subdivides the leaves
into ‘families’ and leads to the Dirichlet mixture. If there are k
founder lineages, then their types are determined by sampling
k individuals from the diffusion at time zero, and hence the
probability that the numbers of founder lineages of types 1, ..., d
are given by I = (Iy,...,1ly) with |l| = kis just M(I; k, x). Let
U = (Uy,..., U be the relative family sizes of these founder
families in the leaves of the tree, and V = (V4,...,V,) be the
frequencies of families derived from new mutations on the tree
edges in (0,t). ThenU & V = (Uq,...,Ux, Vq,...,Vy) has a
Dud v, (1,...,1) & 0) distribution. The term D(-,0 + ) in
(2) is obtained by combining families of individuals of the same
type, corresponding to adding the parameters in the Dirichlet
distribution. If 8 = 0 the process is one of pure random drift.
There is an analogous mixture representation for the transition
function of a Fleming-Viot process. In that setting the finite set
[d] is replaced by an infinite type space. At each time t, X(t) is
now a probability measure on the type space and the Dirichlet
distribution is replaced by a Poisson-Dirichlet distribution (Ethier
and Griffiths, 1993). This is a canonical representation because
the d-type diffusion can be obtained by taking the measure that
determines the type after mutation in the Fleming-Viot process
to be atomic with atoms {6;/|6|; 6; > 0,j € [d]}. The transition
distribution (2) first appeared in Griffiths and Li (1983) and Tavaré
(1984) with an interpretation based on Griffiths (1980) lines
of descent. Donnelly and Tavaré (1987) discuss (2) and give a
probabilistic explanation. Watterson (1984) derived an analogous
representation for the distribution of old and new allele families in
a neutral Moran model.

Of course one can obtain the multi-type Wright-Fisher
diffusion with selection as an infinite population limit of Moran
models (with weak selection). For a population of size N and
types from [d], each individual of type i gives birth at rate A; =
A(1+ o03/N) (to an offspring of the same type) and an individual is
selected at random from the population to die (thus maintaining
constant population size). It is convenient to suppose that the
constants {o;}icq) are negative and we write o for max{o; — o; :
i,j € [d]}. In addition, mutation changes an individual of type i to
an individual of type j at rate up;. If we take A = N/2and letN —
oo we recover the multi-type Wright-Fisher diffusion. Krone and
Neuhauser (1997) and Neuhauser and Krone (1997) exploited the
graphical representation of a Moran model with selection (which
can be thought of as a biased voter model on a complete graph)
to write down the Ancestral Selection Graph (ASG). This graph is
traced out by a branching-coalescing system of lineages and has
embedded within it the genealogy of a random sample from the
population. Passing to a weak selection limit they obtain the same
duality in the diffusion setting. In that limit, if there are currently
j edges in the graph then j — j — 1 (through coalescence) at rate

’
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g andj — j-+1atrate oj/2. These branching events correspond

to ‘potential selective events'. In order to extract the genealogy
of a sample of size n, one starts with n edges in the graph and
traces back until the first (almost surely finite) time when there
is only one edge. This is the ‘ultimate ancestor’. The type of the
ultimate ancestor is chosen (by sampling from the population at
that time) and then one works back through the graph using the
rule that ‘the fitter type always wins’ whenever one arrives at a
point corresponding to a branching event. This allows us to prune
the graph to recover the genealogical tree (and the types in the
sample). Mano (in press) found an explicit, though complicated,
expression for the transition functions of the number of ancestors
in the ASG as we trace backwards in time by considering the
ASG as a moment dual in a two-allele Wright-Fisher diffusion
process with selection and without mutation. Donnelly and Kurtz
(1999) use their ‘modified lookdown’ approach to construct,
simultaneously, the Fleming-Viot process with selection and the
ancestral selection graph that encodes the genealogy. Stephens and
Donnelly (2002) and Fearnhead (2002) consider the case when
the types of individual in the sample are known and construct
an ASG with ‘typed’ lines. Stephens and Donnelly (2002) deal
with general diploid selection (in an infinite population limit)
whereas Fearnhead (2002) considers the genic selection that
interests us here. His results too are valid in the infinite population
limit. Both papers deal only with parent-independent mutation.
The transition rates in their typed ASGs are similar to those of (24)
in this paper once we specialize to a diffusion model with genic
selection and parent-independent mutation.

Barbour et al. (2000) derive a transition density expansion for
a Wright-Fisher diffusion with genic selection in terms of the
transition functions of a dual process. The generator of the diffusion
process {X(t), t > 0} with selection coefficients {o; < 0,j € [d]}
is
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where s(x) =} 4 0%. The transition distribution in the
diffusion can be written as a mixture,
P(t,x,) = ) ha()D(, 146, 0). 4)
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Here D(y,! + 6, o) is a weighted Dirichlet distribution whose

density is weighted by exp(ZjE[d] ajyj). In general, if £ has a

Dirichlet distribution D (-, 6 + ) we write

vO@+1)=E |:exp {Zgjgj”
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for the normalizing constant in D(-,] + 6, 0). The functions
{hu(t),t > 0} are transition functions of a multi-type birth and
death process started from an infinite number of individuals whose
types have frequencies x = (x1, ..., X4). (In fact, showing that one
can construct the birth-death process from this entrance boundary
at infinity is rather involved.) The non-zero entries in the oth row
of the Q matrix for the multi-type birth and death process are
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