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a b s t r a c t

Inspired by previous work of Iwasa et al. (2006) and Haeno et al. (2007), we consider an exponentially
growing population of cancerous cells that will evolve resistance to treatment after one mutation or
display a disease phenotype after two or more mutations. We prove results about the distribution of the
first timewhen kmutations have accumulated in some cell, and about the growth of the number of type-k
cells. We show that our results can be used to derive the previous results about a tumor grown to a fixed
size.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical investigation of cancer began in the 1950s,
when Nordling (1953), Armitage and Doll (1954, 1957), and Fisher
(1959) set out to explain the age-dependent incidence curves of
human cancers. For a nice survey see Frank (2007). Armitage and
Doll (1954) noticed that log–log plots of cancer incidence data are
linear for a large number of cancer types; for example, colorectal
cancer incidence has a slope of 5.18 inmen and 4.97 inwomen. The
authors used this observation to argue that cancer is a multi-stage
process and results from the accumulation of multiple genetic al-
terations in a single cell. The math underlying this hypothesis was
very simple. Suppose Xi are independent and have an exponential
distribution with rates ui (i.e., the density function is uie−uit and
the mean is 1/ui). Noting that the sum X1 + · · · + Xk has a density
function that is asymptotically

u1 · · · uk
tk−1

(k− 1)!
as t → 0, (1)

the authors inferred that the slope of the age–incidence curve was
the number of stagesminus 1,making colon cancer a six-stage pro-
cess.
Later on, Knudson (1971) performed a statistical analysis of

retinoblastoma, a childhood eye cancer. His study showed that fa-
milial cases of retinoblastoma have an earlier age of onset than the
sporadic cases that emerge in families without a history of the dis-
ease. Based on age–incidence curves in the two groups, he hypoth-
esized that two mutagenic events or ‘‘hits’’ are necessary to cause
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cancer in the sporadic case, but in individuals with the inherited
form of the disease, a single hit is sufficient since one mutation is
already present at birth. This study led to the concept of a tumor
suppressor gene, i.e., a gene which contributes to tumorigenesis if
inactivated in both alleles. See Knudson (2001) for a survey.
Knudson’s research led to an explosion of papers on the multi-

stage theory of carcinogenesis too numerous to list here. Most
studies, like the ones cited in the last two paragraphs, merely fit
curves to data on age-specific incidence without considering a
population geneticmodel for the cell population. Iwasa et al. (2004,
2005) were the first to studywaiting times in this way. They used a
Moranmodel for a population of a fixed sizeN in which type-i cells
are those with i ≥ 0 mutations, and type imutates to type i+ 1 at
rate ui+1. Let τk be the first time atwhich there is a type-k cell. They
considered a variety of scenarios based on the relative fitnesses of
mutants. In the neutral case, i.e., if the mutation does not alter the
fitness or growth rate of the cell, they showed:

Theorem 1. In a population of N cells, τ2 is approximately expo-
nentially distributed with rate Nu1u

1/2
2 , provided 1/

√
u2 � N �

1/u1.

They called this result ‘‘stochastic tunneling’’ because the 2’s
arise before the 1’s reach fixation. Durrett et al. (2009), see also
Schweinsberg (2008), generalized this result to cover τk.
In many cases, such as leukemia and polyps in colon cancer,

the cell population does not have constant size. For these reasons,
Iwasa et al. (2006) considered the time to develop one mutation
in an exponentially growing population and Haeno et al. (2007)
extended the analysis to waiting for twomutations. Their model is
amulti-type branching process in which type-i cells are thosewith
i ≥ 0 mutations. Type-i cells give birth at rate ai and die at rate bi,
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Fig. 1. Results of 200 runs of the system with a0 = 1.02, a1 = 1.04, a2 = 1.06bi = 1.0, ui = 10−5 . The smooth curves are the limit results for τi when i = 1, 2, 3.

where λi = ai − bi > 0. The previous papers consider a number
of different possibilities, but here will restrict our attention to the
case in which i→ λi is increasing.
We suppose that during their lifetimes, type-i cells mutate at

rate ui+1, becoming type-i + 1 cells. This is slightly different than
the previous approach of having mutations with probability ui+1
at birth, which translates into a mutation rate of aiui+1, and this
must be kept in mind when comparing results. In applications, the
mutation rates are small compared to birth and death rates, so
the reduction of the birth rate of type-i cells to ai(1 − ui+1) is an
insignificant difference.

1.1. Growth of type-0 cells

The number of type-0 cells, Z0(t), is a branching process, so
if Z0(0) = 1, EZ0(t) = eλ0t and e−λ0tZ0(t) is a nonnegative
martingale. Well-known results imply that e−λ0tZ0(t) → W0 as
t → ∞. A closed-form formula for the generating function ExZ0(t)
is known; see (15). To find the Laplace transform of W0, we let
x = exp(−θe−λ0t) in the closed-form solution and look at the limit
as t →∞ to conclude that

Ee−θW0 =
b0
a0
+

(
1−

b0
a0

)
1− b0/a0

1− b0/a0 + θ
.

From this we see that, if δ0 is a pointmass at 0, and λ0 = a0 − b0,

W0=d
b0
a0
δ0 +

λ0

a0
exponential(λ0/a0) (2)

where the exponential(r) distribution has density re−rt and mean
1/r .
If we let Ω00 = {Z0(t) = 0 for some t ≥ 0} then (14) implies

P(Ω0) = b0/a0, i.e., W0 = 0 if and only if the process dies out.
LettingΩ0

∞
= {Z0(t) > 0 for all t ≥ 0}we have

(e−λ0tZ0(t)|Ω0∞)→ V0 = exponential(λ0/a0) (3)
and hence the Laplace transform

Ee−θV0 =
λ0

λ0 + a0θ
=
(
1+ cθ,0θ

)−1 (4)

where cθ,0 = a0/λ0. Here, and inwhat follows, the c ’s are constants
that only depend on the birth and death rates, and not on the
mutational rates.

1.2. Type-1 results

Let τ1 be the time of occurrence of the first type-1 cell. Since
type-1 cells are produced at rate u1Z0(t),

P(τ1 > t|Z0(s), s ≤ t,Ω0∞) = exp
(
−u1

∫ t

0
Z0(s)ds

)
. (5)

τ1 will occur when
∫ t
0 Z0(s) ds is of order 1/u1. A typical choice

for u1 = 10−5, so 1/u1 is a large number, and we can use
the approximation (Z0(s)|Ω0∞) ≈ e

λ0sV0. Evaluating the integral,
taking the expected value, and using (4), we conclude that

P(τ1 > t|Ω0∞) ≈ E exp
(
−u1V0(eλ0t − 1)/λ0

)
=

λ0

λ0 + a0u1(eλ0t − 1)/λ0

=
(
1+ cτ ,1u1(eλ0t − 1)

)−1
(6)

where cτ ,1 = a0/λ20. The median t
1
1/2 of the distribution has λ

2
0 =

a0u1(e
λ0t11/2 − 1), so

t11/2 =
1
λ0
log

(
1+

λ20

a0u1

)
. (7)

Fig. 1 shows that (6) agrees well with the values of τ1 observed in
simulations. Parameters are given in the figure caption.
Our next step is to consider the growth of Z1(t). In Section 3 we

show that

Mt = e−λ1tZ1(t)−
∫ t

0
u1e−λ1sZ0(s) ds is a martingale

and use this to conclude

Theorem 2. e−λ1tZ1(t)→ W1 a.s. with

EW1 = u1/(λ1 − λ0).

OnΩ0
∞
wewill eventually get a type-1mutant with an infinite line

of descent so {W1 > 0} ⊃ {Ω0∞}.
Let TM = min{t : Z0(t) = M}. The results of simulations

given in Figure 3 of Iwasa et al. (2006) show that when log P(W1 >
x|TM < ∞) is plotted versus log x, a straight line results. Since
their M is large, this suggests that (W1|Ω0∞) has a power law tail.
As we will now show, this is only approximately correct. To begin,
we consider Z∗i (t), the number of type-i cells at time t in a system
with Z∗0 (t) = e

λ0tV0 for all t ∈ (−∞,∞). Let

ch,1 =
1
λ0

(
a1
λ1

)λ0/λ1−1
Γ (1− λ0/λ1)Γ (λ0/λ1 + 1).
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