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a b s t r a c t

We formulate and analyze a multi-generation population dynamics model for pollinators’ mutualism
with plants. The centerpiece of ourmodel is an analytical expression for population-level plant–pollinator
interactions extrapolated from a model of individual-level flowers and bees interactions. We also show
that this analytical expression can be productively approximated by the Beddington–DeAngelis formula—
a function used to model trophic interactions in mathematical ecology.

© 2010 Elsevier Inc. All rights reserved.

0. Introduction

Flowering plants (angiosperms) are the principal flora in most
of themajor landhabitats. They are a relatively recent group of land
plants, originating in early Cretaceous and increasing dramatically
in abundance during that period (Crane et al., 1986, 1995). Charles
Darwin characterized this sudden appearance of fossil records
for a large number of very diverse flowering plant species as an
‘‘abominable mystery’’ (cf. Davies et al., 2004). The current view
is that the explosive diversification and present day abundance of
angiosperms is due to their co-evolution with animal pollinators,
especially insects (Hu et al., 2008).

Despite the subsequent evolution of abiotic-pollination (Crane
et al., 1986), the mutualism between flowering plants and their
insect pollinators remains an important ecological relationship
crucial to themaintenance of both natural and agricultural ecosys-
tems (Kearns et al., 1998). The environmental and economic im-
portance of pollination has been lately emphasized by the reports
of the worldwide decline in honeybee and bumblebee numbers
(Allen-Wardell et al., 1998; Biesmeijer, 2006). These concerns mo-
tivate research aimed at accumulating the knowledge essential to
practical plans for ecological restoration involving pollination (cf.
Dixon, 2009; Mitchell et al., 2009). This paper is motivated by the
hope that mathematical modeling may play a productive role in
pollination research (cf. Stout and Goulson, 2002; Lonsdorf et al.,

∗ Corresponding author.
E-mail addresses: lhadany@post.tau.ac.il, lilach.hadany@gmail.com (L. Hadany).

2009), similar to the one it played in the development of the mod-
ern ecosystem theory (Ginzburg et al., 2007; Williams, 2008; Ro-
manuk et al., 2009).

Many bees are central place foragers (Charnov, 1976; Kacelnik
et al., 1986; Olsson et al., 2008). That is, foraging patches where
they collect nectar and/or pollenmay be several kilometers distant
from their nests (cf. Beekman and Ratnieks, 2000; Greenleaf et al.,
2007; Pasquet et al., 2008).

In this paper we formulate and analyze a population dynamics
model for plants’ interactions with central place pollinators. As
detailed below, the relevant interactions involve three time scales:
(i) handling of individual flowers on the scale of seconds; (ii)
foraging bouts/nectar recovery, tens of minutes; and (iii) plants’
and pollinators’ population densities vary on the scale of years.
Thus, this paper is organized as follows.

In Section 1, we exploit the existence of the three distinct
time scales in plant–pollinator interactions to derive an analytical
expression summarizing individual interactions in population
terms.

In Section 2, we show that this expression can be productively
approximated by the familiar Beddington–DeAngelis function (Bed-
dington, 1975; DeAngelis et al., 1975).

In Section 3, we formulate and analyze a plant–pollinator pop-
ulation dynamicsmodel based on the Beddington–DeAngelis func-
tion (see Appendices for detailed derivations).

1. Plant–pollinator interactions in population terms

The overall features of the pertinent interactions are summa-
rized in Fig. 1, below.
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Fig. 1. Pollinators interact with plants promoting cross-pollination that con-
tributes to plant population renewal. Pollinators gather food (e.g. nectar andpollen).
Some of the food is used for ‘‘maintenance’’, and the rest is used to provision off-
spring assuring pollinators’ population renewal.

We start by considering the dynamics of individual-level
interactions between bees and flowers wherein they forage. As
discussed above, bees may collect food at a distance of several
kilometers from their nests. Hence, a foraging bout’s duration:
travel from the nest to a foraging patch, food collection, flight back
to the nest, and unloading; may constitute a major portion of an
hour (Westphal et al., 2006). However, handling of the individual
flower is a matter of seconds (cf. Stephanou et al., 2000; Jones
and Reithel, 2001). Moreover, the time spent in foraging patches
may be considerably less than half the total foraging time (Schmid-
Hempel and Schmid-Hempel, 1987).

To estimate the effects of an individual pollinator’s visit on
a nectar bearing flower, we reason as follows. It is known that
flowers produce nectar continuously (Castellanos et al., 2002;
Hernandez-Conrique et al., 2007; Keasar et al., 2008). Furthermore,
nectar production appears to be subject to feedback inhibition
i.e., nectar removal stimulates replenishment (Castellanos et al.,
2002). On the other hand, we know that bees leave scent marks on
flowers, and use these marks to reject recently depleted flowers
(cf. Stout and Goulson, 2002; Saleh et al., 2006). Hence, the model
must incorporate a period of recovery after a pollinator’s visit.

Reports on the time course of bees’ rejection of marked flow-
ers vary extensively: from a half-life of less than a minute (cf.
Williams, 1998) to a half-life of several hours (cf. Yokoi and Fujisaki,
2009: Fig. 3b). This variation has been attributed to the identities
of the participating pollinators (cf. Yokoi et al., 2007), the differ-
ences in nectar recovery rates among plants (Stout and Goulson,
2001; 2002), and the fact that pollinators can learn from experi-
ence (Saleh and Chittka, 2006). Stout and Goulson (2001, 2002) es-
timated the average delay in acceptance of marked flowers to be
20–40 min. The last result is supported by direct measurements of
nectar recovery rates (cf. Gilbert et al., 2001). That is, time scale of
the recovery process is comparable to the time scale of pollinators’
foraging bouts.

Given the relatively long recovery times, we have to divide the
flowers in a foraging patch into four subclasses: occupied (by a
pollinator) vs. unoccupied; and marked (by pollinator’s footprints)
vs. unmarked.

• Let the density of unmarked andunoccupied flowers bedenoted
by U , and let the density of marked and unoccupied flowers be
E. We denote the rate coefficient for nectar recovery/fading of
marks by kr (see Table 1 for a summary of key model variables).

• We denote the density of free pollinators (as opposed to ones
occupying a flower)within that patch byV , and the correspond-
ing value for foragers outside the patch (i.e. pollinators in transit
between the nest and the patch, or unloading in the nest) byW .
We assume that pollinators arrive in the patch at rate kaW and
depart at rate kdV .

Fig. 2. A ‘‘kinetic’’ scheme of plant–pollinator interactions summarizing the
discussion above.

• We assume that the rate at which pollinators in the patch visit
flowers is proportional to the product of their respective den-
sities. Since bees cannot distinguish between marked and un-
marked flowers except via a close approach (Williams, 1998),
we define the same rate coefficient, kf , for pollinator visits to
marked and unmarked flowers. Finally, we denote the respec-
tive densities of the two types of pollinator-occupied flowers by
CUV and CEV .

• Even without a recent depletion by a pollinator, flowers exhibit
great intra-specific variation in the rewards they offer. i.e., at
any given time, a non-negligible proportion of unmarked flow-
ers contain little or no reward. (cf. Zimmerman, 1988; Goulson
et al., 2007). That is, a visiting bee may depart an unmarked
flower without collecting any reward—we denote the pertinent
rate constant by ku. We denote the rate constant for productive
interaction by kp. Finally, we denote the rate constant for polli-
nators rejecting a marked flower by km.

The pertinent features of individual-level interactions are
summarized in Fig. 2.

Both the quantity of food collected–and hence survival and
recruitment of new pollinator cohorts–and the degree of cross-
fertilization achieved by plants are proportional to the extent
of productive plant–pollinator interactions. Thus, to formulate a
population-level model for plant–pollinator interactions, we must
derive a formula expressing CUV as a function of plant and pollina-
tor total population densities: x and y respectively.

To achieve this purpose, we take advantage of the three distinct
time scales involved in plant–pollinator interactions, namely:

• Plant and pollinator population densities vary on the scale of
their respective life-spans — several months or more for most
species of plants and central-place foragers.

• The duration of a foraging bout is of an order of an hour.
• Finally, a bee’s visit to an individual flower is a matter of

seconds.

Hence, we can take advantage of the analytical method of
separation of time scales (cf. Segel and Slemrod, 1989; Borghans
et al., 1996). In this approach, fast processes are assumed to reach
steady state (provided it is feasible) while the slower processes
unfold —quasi steady-state approximation (QSSA).

In Appendix A we show that, on the time scale of plant and pol-
linators’ population dynamics, we have the following expression
for CUV as a function of x and y.

Φ(x, y) ≡ CUV (x, y) =
2αxy

√
σ(x, y)+ ρ(x, y)

where
ρ(x, y) = 1 + αx + αβy
and

σ(x, y) = ρ(x, y)2 − 4(1 − s)α2βxy.

(1.1a)

The parameters α, β , and s represent the functional relations
among the parameters in Fig. 2which are obtained under theQSSA.
Namely,
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