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a b s t r a c t

Structured coalescent processes are derived for the finite island model under a migration mechanism
that conserves the subpopulation sizes. The underlying population model is a modified Moran model
in which the reproducing individual can have very many offspring with some probability. Convergence
to a structured coalescent process results when assuming that migration follows a coalescent timescale
which can be much shorter than the usual Wright–Fisher timescale. Three different limit processes are
possible depending on the coalescent timescale, two of which allow multiple mergers of ancestral lines.
The expected time to most recent common ancestor, and the expected total size of the genealogy, of
balanced and unbalanced samples can be very similar, even when migration is low, if the coalescent
process allows multiple mergers. The expected total size increases almost linearly with sample size in
some cases. The results have implications for inference about genetic population structure.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The structured coalescent (Takahata, 1988; Notohara, 1990;
Herbots, 1997) describes the ancestral process of a finite sample of
DNA sequences obtained from a population subdivided into sub-
populations connected by migration. The migration mechanism
is modeled in a way that keeps the subpopulation sizes constant
(conservative migration; Nagylaki, 1980; Strobeck, 1987; Herbots,
1997). The coalescent on two subpopulations was considered by
Takahata (1988), for any finite number of subpopulations by Noto-
hara (1990), and placed in a rigorous framework byHerbots (1997).
The underlying population model of the structured coalescent of
Notohara (1990) and Herbots (1997) is the Wright–Fisher model
(Fisher, 1930; Wright, 1931).
The Wright–Fisher model, as does any population model, has a

coalescence timescale associated with it, which is proportional to
the number of generations, on average, it takes for two individuals
to coalesce in a single population. The timescale of a single haploid
Wright–Fisher population of size N is N generations. By scaling (or
‘speeding up’) time by N , and assuming the population is really
large (i.e. N → ∞) one obtains convergence to the Kingman
coalescent (Kingman, 1982a,b).
Pitman (1999) and Sagitov (1999) independently introduced

the Λ-coalescent, in which any number of ancestral lines can
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coalesce to a single ancestor in the same coalescence event, as
opposed to just two in the Kingman coalescent. In aΛ-coalescent,
the rate at which each group of k ancestral lines out of n coalesce
is

λn,k =

∫ 1

0
xk(1− x)n−kx−2Λ(dx) (1)

where Λ is a finite nonnegative measure on Borel subsets of the
interval [0,1] (Pitman, 1999). The Kingman coalescent is recovered
from the Λ coalescent when Λ has unit mass at 0. Sagitov
(1999) obtained convergence to a Λ-coalescent from a Cannings
(1974) population model of non-overlapping generations. Eldon
and Wakeley (2006) derive special cases of theΛ-coalescent from
a modified Moran model of overlapping generations in which the
reproducing individual can have very many offspring with some
probability. The coalescence timescale in the model of Eldon and
Wakeley (2006) can be much shorter than the N2/2 time steps
associated with the usual Moran model (Moran, 1958, 1962). One
generation in the Wright–Fisher model is equivalent to N time
steps in the Moran model.
Sweepstakes-style recruitment was proposed by Hedgecock

(1994) and Beckenbach (1994) when considering data on Pacific
oysters (Crassostrea gigas). Large offspring numbers may be found
among marine organisms with high fecundity and high early
mortality (Li and Hedgecock, 1998; Hedgecock, 1994; Beckenbach,
1994). Predictions about genetic diversity (Eldon and Wakeley,
2006), linkage disequilibrium (Eldon and Wakeley, 2008b), and
estimates ofmigration rate based on FST (Eldon andWakeley, 2009)
have all been shown to be strongly influenced by large offspring
numbers.
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Limic and Sturm (2006) initiate the study of the Λ-coalescent
in a spatial setting by deriving conditions for the process to ‘‘come
down from infinity’’ (see also Schweinsberg, 2000b). Our work
differs from that of Limic and Sturm (2006) in that we derive a
limit process starting from a finite sample in a finite population, by
enforcing certain conditions onmigration. To derive conditions for
a process to come down from infinity one necessarily starts with
an infinite population and sample size.
We derive the rate matrix of a structured coalescent process

under conservative migration for a finite sample from a finite
number of subpopulations when individuals can have very many
offspring with some probability. The underlying reproduction
model is amodifiedMoranmodel introduced in Eldon andWakeley
(2006). Three different ratematrices are possible, depending on the
probability of large reproduction events. The ratematrices differ in
the rate of coalescence; one is the usual structured coalescent but
on a Moran model timescale, while the other two allow multiple
mergers of ancestral lines. We compare the different processes by
calculating numerically the expected values and variances of the
time to most recent common ancestor, and the total length of all
the branches (total size) of the genealogy, for two different sample
configurations. A key result is that, in some cases, the total size
of the gene genealogy is essentially the same for the two sample
configurations, even when migration is low.

2. General framework

Wewill follow the framework of Herbots (1997) in establishing
convergence to a structured coalescent process, and in many cases
adopt the same notation. In particular, we assume conservative
migration (Nagylaki, 1980; Strobeck, 1987; Herbots, 1997), so the
subpopulation sizes stay constant.
The number D of subpopulations in our model is finite. Let

ci ∈ {1, 2, . . .} be fixed and finite for all i ∈ D ≡ {1, . . . ,D} the
set of subpopulation labels. Then Ni ≡ ciN is the population size of
subpopulation i. We let ni(τ ) denote the number of ancestral lines
present in subpopulation i τ timesteps into the past. One timestep
in the usual Moran model corresponds to 1/N generations in the
usual Wright–Fisher model. Then nN(τ ) ≡ (n1(τ ), . . . , nD(τ )) is
the ordered finite set of the numbers of ancestral lines in each
subpopulation at time τ . With N ≡ {0, 1, 2, . . .}, nN(τ ) ∈ ND .
The finite state space E of nN(τ ) is

E ≡

{
n ∈ ND

:

D∑
i=1

ni ≤ n

}
.

Herbots (1997) allows the number D of subpopulations to be infi-
nite without rescaling time with D. However, in that case the ex-
pected time ET to most recent common ancestor of two ancestral
lines in different subpopulations would be infinite, sinceET is pro-
portional to D (Nei and Feldman, 1972; Li, 1976; Griffiths, 1981).
Wakeley (1999, 2001) derives a structured coalescent process

in which the number of demes D → ∞, by applying Möhle’s
(1998) theorem of separation of timescales. In Wakeley’s (1999)
model, no more than two ancestral lines can be found in any
subpopulation after a scattering phase, in which ancestral lines
migrate to different subpopulations. If we did assume Wakeley’s
(1999) model of population subdivision with a population model
of large offspring numbers, there would never be an opportunity
of a coalescence event involving more than two ancestral lines.
Eldon and Wakeley (2009) derive densities of coalescence times
for two sequences sampled from a structured population as
D → ∞ by applying Möhle’s (1998) theorem. Taylor and
Véber (2009) study the infinitely many demes limit model with
sporadic extinction and recolonization events, and find that the
genealogy of a sample can have simultaneousmultiplemergers (Ξ-
coalescent; Schweinsberg, 2000a) in some cases.

We will establish convergence in distribution of the ancestral
process nN =

{
nN([tNγ /2]) : t ≥ 0

}
to a structured coalescent

process {n(t) : t ≥ 0}, which is a continuous-time Markov chain,
and Nγ /2 is the timescale of the process, as explained in the next
section.
The infinitesimal generator of n(t) takes one of three forms

given by Eqs. (49)–(51), depending on the coalescence timescale.
As explained in Section 3, the coalescence timescale is proportional
to min(Nγ ,N2), 0 < γ <∞, and so can be much shorter than the
usual Wright–Fisher timescale of N timesteps (generations).
To explain the transitions of n(t), define the indicator function

IA as

IA ≡
{
1 if A is true,
0 otherwise. (2)

For example, Iγ<2 = 1 if γ < 2, and zero otherwise. Let εi ∈
ND denote the unit vector with elements εj such that εj ≡ Ij=i.
The transitions that change the value of n(t) are migration events
and coalescence events. When an ancestral line migrates from
subpopulation i to subpopulation j, n(t) changes value from n to
m = n − εi + εj, j 6= i. In the case of a coalescence event in
subpopulation i, n(t) changes value from n tom = n− (x− 1)εi,
with 2 ≤ x ≤ ni. In the usual structured coalescent, x is fixed at
two.
The independence of migration and reproduction (Herbots,

1997) allows us to consider the coalescence and backwards
migration processes separately. Let PN denote the single timestep
transition probability matrix of the ancestral process. Similarly,
let P(m)N and P(c)N denote the single time step transition probability
matrices of the backwards migration and coalescence processes,
respectively. We can then write

PN = P(m)N · P
(c)
N . (3)

In proving convergence we write each matrix P(m)N and P(c)N in
the form I + QN/(Nγ /2) + RN . The matrix I denotes the identity
matrix. The matrix QN denotes the corresponding rate matrix,
and holds terms from the corresponding single time step matrix
that are of order O(1/Nγ ). The terms in QN include probabilities
of coalescence involving ancestral lines in one subpopulation, or
probabilities of migration involving one ancestral line. Finally, the
matrix RN holds all higher order terms, such as probabilities of
coalescence of ancestral lines in more than one subpopulation, or
of migration involving more than one ancestral line. Employing
the dominated convergence theorem we conclude that with
time rescaled in units of Nγ /2 time steps, the single time step
ancestral process described by PN will in a large population
be approximated by a continuous-time Markov process with a
infinitesimal generator whose exact form depends on γ (see Eqs.
(49)–(51)).

3. Population model

Given ni ancestral lines present in subpopulation i, the
probability that x out of the ni lines coalesce (an x-merger, 2 ≤
x ≤ ni) is

Gni,x =
ciN∑
u=2

PU(u)

( u
x

) ( ciN−u
ni−x

)
(
ciN
ni

) . (4)

In the standardMoranmodel,U = 2 always, but we assume thatU
is a random variable with probability distribution PU . We consider
the simple distribution for U in Eq. (5) (in which 0 < εi < 1):

PU(u) = (1− εi) Iu=2 + εiIu=ψiNi , 2 ≤ u ≤ Ni. (5)

The parameters ψi (0 < ψi < 1) have a clear biological meaning
as the fraction of the population in subpopulation i replaced by the
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