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Dynamics of escape mutants
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Abstract

We use multi-type Galton–Watson branching processes to model the evolution of populations that, due to a small reproductive ratio

of the individuals, are doomed to extinction. Yet, mutations occurring during the reproduction process, may lead to the appearance of

new types of individuals that are able to escape extinction. We provide examples of such populations in medical, biological and

environmental contexts and give results on (i) the probability of escape/extinction, (ii) the distribution of the waiting time to produce the

first individual whose lineage does not get extinct and (iii) the distribution of the time it takes for the number of mutants to reach a high

level. Special attention is dedicated to the case where the probability of mutation is very small and approximations for (i)–(iii) are

derived.
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1. Introduction

In many medical, biological and environmental contexts
we find populations that, due to a small reproductive ratio
of the individuals, will go extinct after some time. Yet,
sometimes changes can occur during the reproduction
process that lead to an increase of the reproductive ratio,
making it possible for the population to escape extinction.

Cancer cells submitted to chemotherapy are an example
of such populations (cf. Michor et al., 2004; Nowak et al.,
2004). During chemotherapy the capacity of division of the
cancer cells is reduced, which should lead to the destruction
of tumors. Yet, sometimes mutations in the cells provide
resistance to the therapy. This new type of cells has a
higher reproduction and can escape extinction.

Another example can be found in viruses. A virus
adapted to one host species that switches to another host
usually has a small reproductive mean and, therefore, the

extinction of its lineage is certain. Mutations can lead to a
virus capable of initiating an epidemic in the new host
species. This happened for instance in HIV and SARS
viruses.
More generally, in many evolutionary processes mutants

may appear which are initially less viable than the resident
type and thus are doomed for extinction. Additional
mutations, however, may lead to a more successful type
that can outcompete the resident. In this way, an
evolutionary process can cross a fitness valley.
In agriculture we find situations where introgression may

occur between genetically modified or cultivated organisms
with wild populations (Ellstrand et al., 1999; Maan, 1987).
Usually the first backcrosses are not very viable and fertile,
but eventually a successful type may be produced.
Finally, an important environmental problem is the

spread of insecticide resistance due to hybridization
between resistant and susceptible insects. Some of the
biotypes of the sweet potato whitefly, for instance, have
developed resistance to certain insecticides (Byrne et al.,
1994; De Barro and Hart, 2000; Guirao et al., 1997).
Although matings between different biotypes are rare,
hybrid formation can occur. The initial hybrids have low
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fitness. Yet, after several backcrosses between resistant and
sensitive biotypes, a successful resistant hybrid may be
produced.

In all the examples given above it is of vital importance
to have good estimates of the probability of successful
escape and related aspects, such as the distribution of
numbers of escape mutations, the distribution of waiting
times until escape, and the time it takes for the number of
escape mutants to reach a high level. In this paper we will
derive such estimates.

We will use a discrete time branching process (Jagers,
1975), known as the Galton–Watson branching process
(GWBP) as a model, and therefore we assume that each
individual of the population belongs to a unique genera-
tion, lives one unit of time and gives birth to a random
number of individuals. The descendants will form the next
generation and so on. Since we consider different kinds of
individuals, with different reproductive ratio, we will use a
multi-type GWBP to model their dynamics.

The assumption of discrete non-overlapping generations
is obviously a simplification. Yet, mathematically, discrete
models are much easier to handle than their continuous
time analogs, and in some problems, like extinction, we can
deduce results that also hold for the analogous continuous
time process. Furthermore, our results will serve as a first
step, and may be generalized at a later stage.

The structure of the paper is as follows. In Section 2 we
describe the basic model for two types and derive the
probability generating function of the numbers of muta-
tions to the escape type. We demonstrate how this function
can be used to determine moments of the distribution of
the numbers of mutations. In Section 3 we derive
expressions for the probability of extinction (and escape)
of this process. Furthermore, we present approximations of
these probabilities for multi-type processes with a general
reproduction and mutation scheme, assuming that the
mutation rates are small. We show that the results derived
by Iwasa et al. (2003, 2004), for the Poisson and geometric
offspring distributions can be applied more generally, and
we provide a bound for the error term in the approxima-
tion. In Section 4 we study the waiting time to produce a
successful mutant in a population with two types of
individuals and give approximations for its distribution.
Finally, in Section 5 we consider the time until the mutant
population has grown to a high level.

2. The basic model

Consider a population with two types of individuals,
type 0 and type 1, such that each descendant of an
individual of type 1 can mutate, with probability u 2 ð0; 1Þ,
to type 0. Mutations from type 0 to type 1 are assumed not
to occur. Furthermore, we assume that individuals
reproduce independently of each other and that the
occurrence of mutations is also independent. We assume
that individuals of type 1 have reproduction mean 0omo1
and we call them subcritical individuals. Individuals of type

0 will be called escape type and we assume they have
reproduction mean 1om0o1.
Notice that a single-type GWBP, starting with one

individual of type 0, has positive probability of escaping
extinction and this justifies the choice of calling them
‘‘escape’’ individuals. The choice to call type 1 ‘‘subcri-
tical’’ individuals follows established mathematical termi-
nology.
We will use a two-type GWBP, fðZð0Þn ;Z

ð1Þ
n Þ; n 2 N0g, to

model the number of individuals in this kind of population.
As usual, Zð0Þn and Zð1Þn denote the number of individuals of
type 0 and of type 1, respectively, in the nth generation.
Unless stated otherwise, we assume that the population
starts with a single individual of type 1, i.e., Z

ð0Þ
0 ¼ 0 and

Z
ð1Þ
0 ¼ 1. The joint probability generating function (p.g.f.)

of ðZ
ð0Þ
1 ;Z

ð1Þ
1 Þ is given by

F ðs0; s1Þ ¼ f ðs0uþ ð1� uÞs1Þ; ðs0; s1Þ 2 ½0; 1�
2, (1)

where f denotes the p.g.f. of the reproduction law of type 1
individuals.
Unless mutations occur, such a process will be a single-

type subcritical GWBP and it is the appearance of mutants
that makes the study of such populations an interesting
task. Therefore it is important to study, for instance, the
total number of mutations that occur in the whole process.
This random quantity will play a crucial role in determin-
ing the extinction probability of the process. Let I be the
random variable (r.v.) that counts the total number of
mutations to the escape type in the whole process. Using
(1), we can deduce that the p.g.f. of I, which will be denoted
by h, satisfies the following functional equation:

hðsÞ ¼ F ðs; hðsÞÞ ¼ f ðsuþ ð1� uÞhðsÞÞ 8s 2 ½0; 1�. (2)

From this functional equation we can derive the moments
of I. We start by computing the mean value. Differentiating
(2), we get

h0ðsÞ ¼ f 0ðsuþ ð1� uÞhðsÞÞðuþ ð1� uÞh0ðsÞÞ (3)

and replacing s by 1 in (3), and solving for h0ð1Þ ¼ E½I �,
yields

E½I � ¼
mu

1�mð1� uÞ
. (4)

Differentiating (3), we can obtain the variance in a similar
way, which leads to

Var½I � ¼ h00ð1Þ þ E½I �ð1� E½I �Þ

¼
umð1� uÞð1�mÞ2 þ u2s2

½1�mð1� uÞ�3
, ð5Þ

where s2 denotes the variance of the reproduction law of
type 1 individuals.
From (4) it can be seen that, on average, less than m

mutants are produced before the original type is extinct. It
may come as a surprise that this upper limit holds for all u

and mo1, considering the fact that, if no mutations were
allowed, the expectation of the total progeny of the initial
individual would be m=ð1�mÞ which is always larger than
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