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Abstract

To a first order of approximation, selection is frequency independent in a wide range of family structured models and in populations

following an island model of dispersal, provided the number of families or demes is large and the population is haploid or diploid but

allelic effects on phenotype are semidominant. This result underlies the way the evolutionary stability of traits is computed in games with

continuous strategy sets. In this paper similar results are derived under isolation by distance. The first-order effect on expected change in

allele frequency is given in terms of a measure of local genetic diversity, and of measures of genetic structure which are almost

independent of allele frequency in the total population when the number of demes is large. Hence, when the number of demes increases

the response to selection becomes of constant sign. This result holds because the relevant neutral measures of population structure

converge to equilibrium at a rate faster than the rate of allele frequency changes in the total population. In the same conditions and in the

absence of demographic fluctuations, the results also provide a simple way to compute the fixation probability of mutants affecting

various ecological traits, such as sex ratio, dispersal, life-history, or cooperation, under isolation by distance. This result is illustrated and

tested against simulations for mutants affecting the dispersal probability under a stepping-stone model.
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1. Introduction

An initial aim of this work has been to establish some
population genetic underpinnings of game theory under
isolation by distance, but the results will go beyond a
restrictive conception of game theory. A motivation of
early work on game theory was to emphasize the important
factors involved in the evolution of behavioral contests
(Maynard Smith and Price, 1973), and thereby to address
issues in the group selection debate. To this effect, the basic
idea of game theory is to find stable strategies and to
analyze fitness effects on rare mutants deviating from
these stable states, in order to understand the selection
pressures acting on the trait. The approach is defended as
easier than a more complete analysis of a population
genetic model of the same biological scenario, yet yielding
the most important information that can be provided by a

fast, simplified approach (Maynard Smith, 1982; Eshel,
1996). In this respect, the brand of game theory I will
consider here is only a variant of population genetics that
seeks useful approximations for the long term evolution of
ecological traits, in particular when frequency dependence
is expected.
A strategy x� may be recognized as an evolutionarily

stable strategy (ESS) if deviant strategies x� þ d are less fit
when rare, whether d is positive or negative. This implies
that the first derivative of mutant fitness vanishes in x�, and
that the first nonzero derivative is of even order and
negative. A candidate ESS may thus be defined as a point
where the first derivative of mutant fitness vanishes. When
it is not null, the first derivative determines the direction of
selection on mutants with small phenotypic effect. A
mutant favored when rare may either go to fixation, in
particular if selection is not frequency dependent so that
the mutant is also favored when common, or it may reach a
stable polymorphism, in particular when selection is
negatively frequency dependent. Thus what happens at
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intermediate frequencies is determinant, though it can
often be read from what happens close to fixation of either
allele, so that the usual approach of measuring selection on
rare deviants is justified.

This logic forms the basis of the convergence and ESS
criteria for continuous traits (Maynard Smith, 1982; Eshel,
1983). First order effects are used to determine whether the
population will evolve by allelic substitutions toward x�

(convergence stability), and at this point the second order
effects are used to determine whether deviants will be
selected against (evolutionary stability). Obviously in
nature mutants may have large effects, so the derivatives
in x� may not be enough to determine the dynamics of the
system, and it is not always easy to see when they will be
enough. But stable strategies have to be stable against
invasion by mutants with small effects.

In most applications, the fitness effects are computed for
‘‘rare’’ deviants. Here the (often implicit) assumption is
that the sign of the first order effect is not frequency
dependent, otherwise this concept of rare deviant is
often ambiguous, in its definition or in its practical
application. It should be clear by now that fitness effects
over one generation on a single deviant are not determi-
nant: they may be informative only to the extent that
they inform us on fitness effects when the deviant is not
unique. Indeed, if selection is not strong a negative
fitness effect on a unique deviant is easily overcome by
drift, even in an infinite population, and the fitness effects
when there are several copies of the deviant allele become
determinant.

In a spatially subdivided population, one thus has to
take into account that an allele may be locally common
even if it is globally rare. This is usually accomplished
by some separation of time scales argument, by which
the local distribution of a deviant allele reaches some
type of quasi-equilibrium much faster than the deviant
allele frequency changes in the total population. For
example, Motro (1982) computed quasi-equilibrium dis-
tributions to obtain ESS dispersal rates. One may aim to
compute only the minimal features of the distribution that
are relevant for the computation of first order effects: this is
what is achieved by inclusive fitness arguments as first
developed by Hamilton (1964, 1970). Likewise one may
compute those terms relevant for the second order effects
(Ajar, 2003). Multilocus quasi-equilibrium techniques are
based on similar ideas, though here the genetic structure
under consideration is the statistical association between
alleles at different loci (e.g. Barton and Turelli, 1991;
Kirkpatrick et al., 2002). The spatial and multilocus quasi-
equilibrium techniques can be combined (Roze and
Rousset, 2005).

For rare mutants in an infinite island model, a variant of
this argument considers the descendants of a single
immigrant in a deme, and follows the number of such
descendants until the local extinction of the family
descended from this immigrant (Metz and Gyllenberg,
2001). Several deviant descendants may thus be interacting,

and this accounts for the fact that the allele may be locally
common. The assumption that the allele is globally
rare enters into the computation through ignoring the
immigration of other deviant individuals in the deme.
Clearly the probability of such immigration depends
on the allele frequency p, and when p vanishes the
overall fitness effect on the descendants of an ancestor
connects smoothly with the fitness effect when the single
deviant ancestor is the single deviant in the total popula-
tion, so the computation ignoring deviant immigrants is
informative about the fitness of individuals over a range of
values of p.
Under localized dispersal, where immigrants preferen-

tially come from adjacent demes, one cannot neglect the
immigration of deviant individuals simply on the ground
that the allele is globally rare. There is still some concept of
quasi-equilibrium (as will be shown below), but attempts to
compute a quasi-equilibrium distribution have focused on
models involving demographic stochasticity. These at-
tempts are confronted with an infinite system of equations.
So-called pair approximations have been used to reduce
this to a finite system, with results of variable accuracy
(Matsuda et al., 1992; van Baalen and Rand, 1998). The
simpler case without demographic stochasticity seems
unexplored by these techniques.
An alternative approach that turns out to be feasible in

the latter case is to obtain results for fixation probability
without knowing the exact relation between deviant fitness
and p (Rousset and Billiard, 2000). Such results should be
consistent with quasi-equilibrium arguments when a stable
polymorphism is not maintained by selection. More
precisely, for mutants with small phenotypic effect, the
latter condition means that first order effects of selection
should be of constant sign over all values of p, except
perhaps for a few configurations of the population, as
when there is a single deviant individual, since as noted
above these occasional opposite effects of selection may be
overcome by drift. That the first order selection is of
constant sign is known in island models when the number
of demes is large (Rousset, 2004, pp. 109, 207) and this
paper will show that this also occurs under isolation by
distance.
Further, fixation probabilities provide a meaningful,

even if incomplete, way of measuring the effects of finite
size on the direction of selection, which alternative
approaches have not addressed. This idea has attracted a
recent surge of interest, with applications to so-called linear
games in unstructured populations (Nowak et al., 2004;
Wild and Taylor, 2004; Lessard, 2005). Diffusion approx-
imations have long provided an efficient tool to analyze
evolution in finite unstructured populations, and this paper
will consider the extension of a diffusion result for fixation
probability in populations with localized dispersal. I will
generalize an elegant argument due to Maruyama (1983),
showing how fixation probabilities can be computed
despite the exact form of the first order effect not being
known.
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