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Competitive exclusion and limiting similarity: A unified theory
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Abstract

Robustness of coexistence against changes of parameters is investigated in a model-independent manner by analyzing the feedback

loop of population regulation. We define coexistence as a fixed point of the community dynamics with no population having zero size. It

is demonstrated that the parameter range allowing coexistence shrinks and disappears when the Jacobian of the dynamics decreases to

zero. A general notion of regulating factors/variables is introduced. For each population, its impact and sensitivity niches are defined as

the differential impact on, and the differential sensitivity towards, the regulating variables, respectively. Either the similarity of the

impact niches or the similarity of the sensitivity niches results in a small Jacobian and in a reduced likelihood of coexistence. For the case

of a resource continuum, this result reduces to the usual ‘‘limited niche overlap’’ picture for both kinds of niche. As an extension of these

ideas to the coexistence of infinitely many species, we demonstrate that Roughgarden’s example for coexistence of a continuum of

populations is structurally unstable.
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1. Introduction

We expect the struggle for life between the kinds
attempting to occupy the same niche and peaceful coex-
istence between the species established in different niches
(Gause, 1934). This principle of ‘‘competitive exclusion’’ has
become a cornerstone of ecological thinking while at the
same time it has remained highly controversial. The basic
models were introduced by MacArthur and Levins in the
mid-1960s both for discrete and for continuous resources.
These models differ considerably in their mathematical
setup and sophistication.

The discrete models (MacArthur and Levins, 1964;
Tilman, 1982) consider competition for a finite number of

distinct resources and state that the number of coexisting
species should not exceed the number of resources they
compete for. This conclusion has a sound mathematical
foundation: to have a structurally stable solution, i.e., a
solution that does not disappear on the slightest change of
the model specification, the number of equations describing
the population dynamical equilibrium should not exceed
the number of unknowns.
With some risk of becoming tautological, we can relax

the assumption of resource competition by counting all the
factors behaving like resources (Levin, 1970; Armstrong
and McGehee, 1980; Heino et al., 1997). Limited practical
usefulness is the price for theoretical robustness. It is a rare
biological situation where the resources, or the regulating
factors, are easy to count and low in number. In most
cases, very many environmental factors that are potentially
regulating are present. Which are the really important
ones? Which of them should be considered as distinct from
the others (cf. Abrams, 1988)? On the other hand, if only
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the limiting resources are counted, their number often turns
out to be too low to explain species diversity in a constant
environment (Hutchinson, 1959).

The classical continuous model (MacArthur and Levins,
1967) studies the partitioning of a continuous scale of
resources, e.g., seeds of different sizes. In this case, strictly
speaking, an infinite number of different resources are
present, i.e., each seed size has to be considered as a
different resource. Consequently, the argument used for the
discrete situation cannot be applied to bound the number
of species in the continuous case. Still, we do not expect an
infinite number of species to coexist. The classical concept
of ‘‘limiting similarity’’ (Hutchinson, 1959), based on
the study of the Lotka–Volterra competition model
(MacArthur and Levins, 1967), states that the resource
scale is partitioned between the species. The width of the
‘‘resource utilization function’’ of a species is expected to
set the width of a single partition, referred to as the ‘‘niche
breadth’’. The allowed similarity of the coexisting species is
limited and their number is bounded by the number of
possible partitions. It seems to be reasonable to consider
one partition of the resource scale as a single resource,
distinct from the rest. Unfortunately, no mathematical
theory has appeared as yet that fully captures this intuition
in a general way: again, the question is, to what extent
should the resources differ to be counted as different?
Neither has any general conclusion emerged when the later
studies went beyond the original Lotka–Volterra frame-
work. These studies actually resulted in a fading away of
the hope of finding a model-independent lower bound to
similarity (Abrams, 1983).

The status of the limiting similarity principle is unclear
even for the original Lotka–Volterra model. May (1973, p.
158) found that the limit of similarity of two coexisting
species can be arbitrarily small if their respective carrying
capacities are chosen to be sufficiently similar. Yodzis
(1989, p. 125) states that, contrary to the two species case,
there is a strict lower bound to similarity for three species.
Probably, the most drastic blow against limiting similarity
occurred when Roughgarden (1979, pp. 534–536) provided
an example of coexistence of a continuum of types in the
Lotka–Volterra model. While the example was intended to
describe the phenotype distribution within a single species,
it can be interpreted in the context of species coexistence.
An infinite number of different resources does allow
coexistence of an infinite number of species. The example
thus seems to violate the whole idea of limiting similarity
(Maynard Smith and Szathmáry, 1995).

Even though limiting similarity and resource partitioning
failed to earn the status of a mathematical theory, they
have remained widely accepted concepts in ecology (Begon
et al., 1996, p. 300). However, if limiting similarity were
just an artifact of some specific mathematical models, we
would not be allowed to use it as a basis of biological
reasoning. Without limiting similarity, the practical rele-
vance of competitive exclusion would be constrained to the
simplest cases of population regulation (Rosenzweig, 1995,

p. 127). If we could not safely assume competitive exclusion
between the variants of the same species, even the
Darwinian concept of natural selection would lose its
basis. The goal of the present paper is to carry out the
mathematical step from the solid ground of competitive
exclusion in the discrete case to establish the general
existence of limiting similarity in a well-defined sense.
The key issue of species coexistence is the necessity for

mechanisms stabilizing it (Chesson, 2000b). This vantage
point allows us to investigate the problem independent of
specific model assumptions. We start from May’s observa-
tion (May, 1973, 1974) that the more similar the two
species are, the more narrow the range of K1=K2

permitting coexistence (May, 1973; K1 and K2 stand for
the two carrying capacities. See also a similar analysis by
Vandermeer, 1975, which uses the intrinsic growth rates,
instead of the carrying capacities as a reference.) We
generalize this statement beyond its original framework of
a Lotka–Volterra-type model and to an arbitrary number
of species. Limiting similarity is interpreted as a shrinking
likelihood of coexistence with increasing similarity. Espe-
cially, we demonstrate that the Roughgarden type of
continuous coexistence, as it is called, generally becomes
impossible on the slightest change of the model. To relate
limiting similarity to resource usage, or to the regulating
factors, and to the concept of niche, we will apply Leibold’s
(1995) distinction between the two legs of the population–
environment interaction. We restrict our mathematical
analysis to fixed-point attractors in a constant environ-
ment.
The theory is presented in several steps. After introdu-

cing our central notions in Section 2, we demonstrate the
basic issues of limiting similarity and establish the
connection between the discrete and the continuous cases
via a linear model in Section 3. Then, in Section 4, the non-
linear, model-independent generalization is presented.
Finally, we discuss the wider context of our work, in
Section 5. Background mathematics are summarized for
the convenience of the interested reader in the appendix.

2. Basic concepts

2.1. The notion of robust coexistence

Populations coexist when the long-term growth rates of
all of them are simultaneously zero, i.e., the births just
compensate for the deaths in each of them. Coexistence of
any given set of populations can be achieved in many
parameter-rich models by adjusting the parameters. The
problem of coexistence becomes non-trivial only when one
rejects parameter fine-tuning and requires the population
dynamical equilibrium point to exist for a considerable
range of the parameters. In a given environment, the wider
this range, the more likely the coexistence. We will refer to
this property as robustness of coexistence. Robustness of
coexistence is measured by the volume of the set of
parameter values permitting coexistence. In special, but
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G. Meszéna et al. / Theoretical Population Biology 69 (2006) 68–87 69



Download English Version:

https://daneshyari.com/en/article/4503058

Download Persian Version:

https://daneshyari.com/article/4503058

Daneshyari.com

https://daneshyari.com/en/article/4503058
https://daneshyari.com/article/4503058
https://daneshyari.com

