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FAST TCP has been shown to be promising in terms of system stability, throughput and fairness. However,
it requires buffering which increases linearly with the number of flows bottlenecked at a link. This paper
proposes a new TCP algorithm that extends FAST TCP to achieve (o, n)-proportional fairness in steady
state, yielding buffer requirements which grow only as the nth power of the number of flows. We call
the new algorithm Generalized FAST TCP. We prove stability for the case of a single bottleneck link with
homogeneous sources in the absence of feedback delay. Simulation results verify that the new scheme is
stable in the presence of feedback delay, and that its buffering requirements can be made to scale signif-
icantly better than standard FAST TCP.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There is much evidence [3] that the loss-based additive in-
crease/multiplicative decrease (AIMD) algorithm used in TCP
[5] does not scale well to high capacity networks. Many new
improved versions of TCP have been proposed to solve this
problem. These include CUBIC [13], H-TCP [14] and FAST TCP
[19]. Recent simulation [19] and experimental [8] studies indi-
cate that FAST TCP is a viable alternative to the currently used
loss-based TCP versions.

Many modern congestion control algorithms can be understood
as algorithms to solve an optimization problem, in which the net-
work seeks to maximize the sum of the users’ “utilities” subject to
link capacity constraints. A user’s utility is the benefit it derives
from transmitting at a given rate. The equilibrium rates are deter-
mined by the objective of the optimization, while the dynamics are
determined by the optimization procedure. In this framework,
users pay a “price” for transmitting data on a congested link; typ-
ically either in terms of loss or queueing delay, and the equilibrium
value of this price depends on the users’ utility functions. As these
two price mechanisms have adverse effects on users, it is desirable

* Corresponding author. Tel.: +61 398879028.
E-mail addresses: yuancao1980@gmail.com (C. Yuan), liansheng.tan@rsise.
anu.edu.au (L. Tan), l.andrew@ieee.org (L.L.H. Andrew), w.zhang@mail.ccnu.edu.cn
(W. Zhang), mzu@unimelb.edu.au (M. Zukerman).

0140-3664/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2008.05.028

to use a utility function which achieves a fair rate allocation and
imposes low (and fair) prices on users. This paper adapts the
dynamics of FAST [19] to allow it to optimize a more general form
of utility function. This allows a tradeoff to be made between fair-
ness and low queueing delay.

Unlike AIMD-based TCP schemes, FAST TCP uses queueing de-
lay as the congestion indication, or price. Users’ utilities are log-
arithmic, making the solution to the optimization problem
satisfy the proportional fairness criterion [9]. If all users use
FAST, the unique equilibrium rate vector is the unique solution
of the utility maximization problem. One drawback of this ap-
proach is that the queueing delay (and hence buffer require-
ments) at a node increase in proportion to the number of
flows bottlenecked there.

To allow a tradeoff between fairness and network utilization,
Mo and Walrand [12] popularized the concept of («,n)-propor-
tional fairness, which generalizes max-min fairness [1], propor-
tional fairness [9] and minimum potential delay [11]. This
corresponds to a simple family of power-law utility functions.
We propose an extended version of FAST TCP, termed Generalized
FAST TCP, whose equilibrium rates are (o, n)-proportional fair. This
is achieved by making a slight change to the window update equa-
tion, which implicitly optimizes a suitable utility function. As well
as allowing increased fairness, corresponding to n > 1, Generalized
FAST TCP allows the queueing delay to be reduced at nodes carry-
ing many flows by setting n < 1.
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Our proposed scheme is a generalization of the existing FAST
TCP [19]. Specifically, the behavior of FAST TCP is reproduced by
the special case of Generalized FAST with n = 1, while other modes
of Generalized FAST cannot be achieved simply by tuning FAST TCP
parameters. We will show that the new scheme inherits the merits
of the current FAST TCP regarding stability and throughput for any
value of n and not just for n = 1. We also provide stability analysis
and prove that Generalized FAST TCP achieves (o, n)-proportional
fairness.

The remainder of this paper is organized as follows. In Section 2,
we clarify the relationship between the mechanism of FAST TCP
and the proportional fairness notion. In Section 3, we describe
the new Generalized FAST TCP scheme and discuss the effect of
the parameters o'/" and n on buffer occupancy and fairness. In Sec-
tion 4, we analyze and prove the stability of the new scheme. Sec-
tion 5 investigates the tradeoff between fairness and the queueing
delay experienced by users. In Section 6, we verify by simulations
that the new scheme is stable and («, n)-proportionally fair. Finally,
conclusions are drawn in Section 7.

2. Proportional fairness and FAST TCP

A general network can be described as a set L= {1, ..., M} of
links, shared by a set I = {1, ..., N} of flows. Each link [ € L has
capacity c;.. Flow i € I follows a route L; consisting of a subset of
links, i.e., L; = {l € L|i traverses [}. A link [ is shared by a subset I
of flows where I, = {i € I|i traverses [}. Let x; be the rate of flow i
and let x = (x;,i € I) be the rate vector. Let A= (A;,i€l,l1€L) be
the routing matrix, where A; = 1 if flow i traverses link I, and 0
otherwise. Throughout this paper, the terms “flow”, “source” and
“user” are used synonymously.

A rate vector x > 0 is called feasible if

ZXI‘QCI, vlel (1)
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The notion of fairness characterizes how competing users should
share the bottleneck resources subject to the above constraint. A
feasible flow rate vector x is defined to be max-min fair if any rate
X; can not be increased without decreasing some x; which is smaller
than or equal to x; [1]. Kelly et al. [9] proposed the so-called propor-
tional fairness. A rate vector x* is o;-weighted proportional fair if it is
feasible, and if for any other feasible vector x;, the aggregate of pro-
portional change is non-positive,

X — X}
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where ¢; is positive numbers, i=1,2, ...
Consider the following optimization problem (P):
max > U;(x;), 3)
x=0
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subject to the constraint given by (1), where U; is the utility func-

tion of user i. We follow the standard approach [9] of taking the

Lagrangian

L(x;p) =Y (Ui(x) = xiq;) = > pcr, (4)
i ]

where p,, called the price of link /, is the Lagrange multiplier of the

constraint due to the capacity of link I. We assume that, in
equilibrium,

M
q; = Z Aipy (5)
=1

is the aggregate price observed by source i in its path, and link [ ob-
serves the aggregate source rate

N
V=Y Aixi. (6)
i1
For given link prices, each source i determines its optimal rate
as
xi(p) = argmax Uj(x;) — xiq; = (U}) ' (qy). (7)

The primal optimization (P) can then be replaced by its dual (D)
given by
21151 (Ui(xi(p) — gixi(p) + > cipy. (8)
S ]
According to [9], o;-weighted proportional fairness is achieved

within a system of social welfare maximization, if all users have
utility functions of the following form:

fi(xi) = o log x;. 9)

That is, an o;-weighted proportional fair vector solves the above
optimization problem (P) by maximizing the sum of all the loga-
rithmic utility functions. In this case, (7) becomes

i
Xi=—. 10
=g (10)

For the existing version of FAST TCP, it is known [19] that the

rate allocaton (10) is the unique equilibrium point (x;,q;) of

diW,‘ t
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where
oAiWw;, if q; = 0
(Wi, i) = {oci, otherwise.

Since this equilibrium point is known [19, Theorem 1] to be the un-
ique optimal solution of the above problem (P) with the specific
utility functions given by (9), FAST TCP maximizes the sum of log-
arithmic utility functions. This implies in particular that the current
FAST TCP achieves o;-weighted proportional fairness. Note that the
fairness parameter ¢; is also the number of flow i’s packets that are
buffered in the routers in its path at equilibrium. If there are N
flows, the total number of packets buffered in the routers at equilib-
rium is 3, o (see [8]). From this, it is seen that the buffer occu-
pancy increases linearly with the number of flows.

3. The Generalized FAST TCP

As a generalization of proportional fairness and max-min fair-
ness, the definition of («,n)-proportional fairness is given by Mo
and Walrand in [12], which is described as follows. Note that our
notation differs slightly from that of [12], so that it corresponds
to its usual meaning in the FAST algorithm. A rate vector x* is
(o, n)-proportionally fair, if it is feasible, and if for any other feasi-
ble vector x,

Xi — X!
7N <o, (12)
iezl ;)

where o; are positive numbers, for i € I. Note that (12) reduces to (2)
when n = 1. It is also seen that, when n becomes large, the (o, n)-
proportional fair rate vector approaches the max-min fair rate vec-
tor. Achieving (o, n)-proportional fairness corresponds to maximiz-
ing the sum of users’ utilities of the form [12]

log X; -1
Ui(x) = {ax 0g Xi, n
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(1 —n)"'xI",  otherwise. (13)
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