Cite this article as: Acta Agron Sin, 2009, 35(8): 1500–1507.

ScienceDirect RESEARCH PAPER

Characteristics of Photosynthesis in Wheat Cultivars with Different Sensitivities to Ozone Under O₃-Free Air Concentration Enrichment Conditions

CAO Ji-Ling^{1,2}, WANG Liang^{1,2}, ZENG Qing^{1,*}, LIANG Jing^{1,2}, TANG Hao-Ye¹, XIE Zu-Bin¹, **LIU Gang1 , ZHU Jian-Guo1,*, and Kazhuhiko KOBAYASHI3**

¹ State Key Laboratory of Soils and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

 2^{2} Graduate School of Chinese Academy of Sciences, Beijing 100080, China

³ Department of Global Agricultural Science, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-8657, Japan

Abstract: With the help of the Chinese Ozone-Free Air Concentration Enrichment (O₃FACE) platform, the responses of photosynthsis characteristics to elevated O₃ concentration were investigated using winter wheat (*Tritcium aestivum L.*) cultivars Yannong 19 and Yangmai 16, which differ in sensitivities to O_3 . Under O_3 treatment for 75 d, the net photosynthetic rate (P_n) , stomtal conductance (G_s) , and transpiration rate (T_r) decreased significantly in both cultivars, whereas the intercellular CO₂ concentration (C_i) changed slightly. The O₃-sensitive cultivar Yannong 19 had larger reductions in P_n (61.1%), G_s (68.0%), and T_f (57.4%) than Yangmai 16 (27.9%, 37.5%, and 27.9%, respectively). This indicated that the reduction of *P*n mostly resulted from the nonstomatal factors in cooperation with stomal factors. In the chlorophyll fluorescence parameters, the maximal photochemical efficiency of PSII in the dark (F_v/F_m) , the potential activity of PSII (F_v/F_o), the photochemical quenching (q_P), and the rate of photochemical reaction (P_{rate}) decreased in the O₃ treatment, but the nonphotochemical quenching (NPQ) and the rate of thermal dissipation (D_{rate}) showed a upward tendency. The change tendency of total soluble protein content and the amount of Rubisco was similar to that of chlorophyll fluorescence parameters and *P*n. The results implied that the major nonstomal factors responsible for the P_n decrease under elevated O_3 concentration were the Ribulose-1,5-bisphosphate (RuBP) carboxylation limitation and the damage of PSII. The change extents of all the parameters were larger in Yannong 19 than in Yangmai 16. The high *T*r value and slow reduction of Rubisco amount in Yangmai 16 are probably crucial reasons for its high photosynthetic rate.

Keywords: Ozone; Wheat; Photosynthesis; Chlorophyll fluorescence; Soluble protein; Rubisco

The tropospheric ozone (O_3) concentration is rising at a rate of 0.5–2.5% per year due to anthropogenic activities, and it will exceed 60 nL L^{-1} at the mid-twenty-first century. Especially in eastern China, $O₃$ concentration is predicted to increase by 50% by 2030 $^{[1-3]}$. Ozone has been recognized as a secondary phytotoxic pollutant that is gained wide concern in agriculture due to its effects on physiology, growth, and yield of crops $[4-7]$. Therefore, it is crucial to understand the effects of chronic O_3 exposure on plant growth, development, photosynthesis, and yield.

Photosynthesis is one of the most important physiological

processes affected in sensitive crops by excess O_3 [8]. Numerous studies have been conducted to investigate the effects of elevated O_3 concentration on photosynthesis. Calatayud et al. $^{[9]}$ found that elevated O_3 concentration could inhibit photosynthesis and reduce net photosynthetic rate (P_n) of plants after a long-term exposure. Guo et al. [10] reported that the reduction in photosynthetic capability resulted from the limitation of $CO₂$ and $H₂O$ entering cells due to the decrease in stomatal conductance. Besides, Farage and Long^[11] suggested that the decline of Rubisco activity in wheat (*Triticum aestivum* L.) is the main reason for the photo-

DOI: 10.1016/S1875-2780(08)60098-X

Received: 1 December 2008; Accepted: 19 April 2009.

^{*} Corresponding authors. E-mail: qzeng@issas.ac.cn (ZENG Qing); jgzhu@issas.ac.cn (ZHU Jian-Guo)

Copyright © 2009, Crop Science Society of China and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Published by Elsevier BV. All rights reserved. Chinese edition available online at http://www.chinacrops.org/zwxb/

inhibition of leaves under O_3 -Free Air Concentration Enrichment (O3FACE). However, in lettuce (*Lactuca sativa* L.), the limitation of stomatal conductance and the decrease of mesophyllic CO_2 -fixation ability were responsible for the decline of $CO₂$ assimilation when the lettuce plants were exposed to elevated O_3 ^[12]. Yao et al. ^[13] also revealed that the reduction of P_n is related to both stomatal and nonstomal limitations with open-top chamber (OTC) platform. Although the effects of elevated O_3 concentration on plant photosynthesis have been widely studied with environmentcontrolled chambers, the conclusions are not ascertained due to the difference between free-air field and environmentcontrolled chambers. Compared to the environment-controlled facilities, $O₃FACE$ can provide undisturbed field conditions and more reliable measurements. Therefore, the $O₃FACE$ platform is in favor of predicting the real responses of plants to elevated O_3 concentration.

Wheat is one of the staple food crops in the world. Unfortunately, it is believed to be very sensitive to O_3 ^[14]. The response of wheat to O_3 varies among cultivars with different sensitivities to O_3 ^[15]. In this study, 2 winter wheat cultivars, Yannong 19 and Yangmai 16, were used to investigate the responses of photosynthsis characteristics to elevated $O₃$ concentration with the Chinese $O₃FACE$ platform. The objectives of this study were to gain further insights into the mechanism of the O_3 -tolerent cultivars.

1 Materials and methods

1.1 Experimental site and experiment design

The O3FACE facilities in the rotation system of rice (*Oryza sativa* L.) and wheat are located at Maling Village (32°35′5″N, 119°42ƍ0ƎE) of Jiangdu City, Jiangsu Province, China. The experimental site is an example of a subtropical marine climate with the mean annual precipitation of 980 mm, mean annual evaporation no less than 1100 mm, mean annual average temperature of 14.9°C, the total annual sunshine time more than 2100 h, and the frostless period of 220 d.

To minimize the O_3 contamination between treatments, the O3FACE was set 90 m away from the ambient air rings. For the $O₃FACE$ rings of 14.5 m in diameter, pure $O₃$ was released towards the center of each ring from a large number of portholes $(0.5 \times 0.9 \text{ mm})$ evenly distributed along the octahedral vent pipes. The octahedral vent pipes were horizontally surrounded the experimental area and approximately 50–60 cm above plant canopy.

The O₃FACE system had 3 O₃FACE rings and 3 similar ambient rings. The O_3 concentration in the center of the O3FACE plots was controlled as 1.5 times, with 10% error, of the ambient air by a computer system. The ambient air rings were in normal atmosphere as nature. The $O₃$ treatment duration, from March 5 to May 27, 2008 except for April 29 because of pipe failure, is approximately 83 d. The O_3 concentration dynamics in $O₃FACE$ and ambient air are shown in Fig. 1.

The O_3 -sensitive wheat cultivar, Yannong 19, and the O3-tolerant cultivar, Yangmai 16, were sown on November 13, 2007 at a density of 2.25 million seedlings per hectare with row space of 25 cm. The photosynthetic parameters were measured at 9:00–11:00 of the 55th (April 28, 2008), 65th (May 9, 2008), and 75th day (May 19, 2008) after O_3 treatment. The same leaves were sampled for the measurements of physiological parameters.

1.2 Methods for measurements

1.2.1 Gas exchange parameters In each cultivar, net photosynthetic rate (P_n) , stomatal conductance (G_s) , transpiration rate (T_r) , and intercellular CO_2 concentration (C_i) were measured with 5 uppermost fully expanded leaves per ring using a LI-6400 portable photosynthesis system (Li-Cor, Lincoln, NE, USA). Measurements were taken at the air $CO₂$ concentration under photosynthetic photon flux density of 1200 μmol s⁻¹ m⁻² when the ambient temperature was 25°C and the air relative humidity was 45%.

1.2.2 Chlorophyll fluorescence parameters Using the identical leaves for the measurements of gas exchange parameters, the readings of FMS-2 portable fluorometer (Hansatech, UK) were obtained in the subsequence of a 20-minute predarkness, including minimal fluorescence (F_0) , maximal fluorescence (F_m) , maximal fluorescence in the light (F_m) , fluorescence in the stable state (F_s) , efficiency of light energy transformation of PSII (F_v/F_m) , potential activities of PSII (F_v/F_o) , photo chemical quenching (q_p) , and nonphotochemical quenching (NPQ). The relative limit of photosynthesis (L_{PFD}) , photochemical reaction rate (P_{rate}) , and thermal dissipation rate (D_{rate}) ^[16] were calculated from the chlorophyll fluorescence parameters measured, using the following equations: $L_{\text{PFD}} = 1 - [q_{\text{p}} \times (F_{\text{m}}' - F_{\text{s}}) / F_{\text{m}}'] / 0.83$, $P_{\text{rate}} = (F_{\text{m}}' - F_{\text{s}}) / F_{\text{m}}' \times q_{\text{p}} \times PFD, D_{\text{rate}} = [1 - (F_{\text{m}}' - F_{\text{s}}) / F_{\text{m}}']$ × *PFD*, where *PFD* is the photo flux density. Each value of the parameter is the average of 5 replicates.

Fig. 1 Changes of O₃ concentration under O₃FACE and ambient air conditions during the experiment

Download English Version:

<https://daneshyari.com/en/article/4503369>

Download Persian Version:

<https://daneshyari.com/article/4503369>

[Daneshyari.com](https://daneshyari.com)