
Design and analysis of an adaptive object replication algorithm
in distributed network systems

Lin Wujuan a,*, Bharadwaj Veeravalli b

a Hitachi Asia Ltd., Singapore
b National University of Singapore, Singapore

Received 13 July 2006; received in revised form 28 December 2007; accepted 6 January 2008
Available online 18 January 2008

Abstract

In this paper, we propose an adaptive object replication algorithm for distributed network systems, analyze its performance from both
theoretical and experimental standpoints. We first present a mathematical cost model that considers all the costs associated with servicing
a request, i.e., I/O cost, control-message transferring cost, and data-message transferring cost. Using this cost model, we develop an
adaptive object replication algorithm, referred to as Adaptive Distributed Request Window (ADRW) algorithm. Our objective is to
dynamically adjust the allocation schemes of objects based on the decision of ADRW algorithm, i.e., whether the system is read-intensive

or write-intensive, so as to minimize the total servicing cost of the arriving requests. Competitive analysis is carried out to study the per-
formance of ADRW algorithm theoretically. We then implement our proposed algorithm in a PC based network system. The experimen-
tal results convincingly demonstrate that ADRW algorithm is adaptive and is superior to several related algorithms in the literature in
terms of the average request servicing cost.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Object replication; Allocation scheme; Competitive analysis; I/O cost; Communication cost

1. Introduction

In a distributed network system, users at different nodes
may issue transactions to access the objects in the system.
Transferring an object from one node to another may be
required by some application which will consume a varying
network bandwidth. In turn, designing efficient and auto-
adaptive object (data) dissemination and management
schemes for applications always offers considerable chal-
lenges to the system designers. Generally, the requests
issued by users are either read requests or write requests.
A read request is serviced with a replica of the requested
object, while a write request actually modifies the requested
object. Particularly, in order to guarantee the consistency
among multiple replicas of an object, every change (a write

request) to an object must be transferred to all the other
available replicas elsewhere (or in a majority consensus

approach [26] for weak consistency). In other words, a write
request for an object must be propagated to all the proces-
sors that have replicas of the object in their respective local
memories. This will incur considerable communication
cost.

In this paper, we consider three types of costs when ser-
vicing requests. The first one is the I/O cost, i.e., the cost of
fetching an object from the local memory to the processor
or saving an object from a processor to its local memory.
The other two types of cost are due to communication in
the underlying interconnection network, i.e., control-mes-
sage transferring cost and data-message transferring cost.
A control-message transfer is needed when a processor
requests for an object which is not in its local memory,
whereas a data-message transfer is just the transferring of
an object between the processors via the interconnection
network. The objective of this paper is to design an efficient

0140-3664/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2008.01.005

* Corresponding author. Tel.: +65 62312154.
E-mail addresses: wjlin@has.hitachi.com.sg (L. Wujuan), elebv@nus.

edu.sg (B. Veeravalli).

www.elsevier.com/locate/comcom

Available online at www.sciencedirect.com

Computer Communications 31 (2008) 2005–2015

mailto:wjlin@has.hitachi.com.sg
mailto:elebv@nus. edu.sg
mailto:elebv@nus. edu.sg


object replication algorithm to handle on-line requests
arriving at the system with a minimum cost and maintain
the consistency of multiple replicas of objects in the system.
In a distributed network system, objects are usually repli-
cated in several nodes for improving certain system perfor-
mance metrics such as the response time of transactions,
bandwidth utilization, object availability, and system reli-

ability [7–9,13]. However, it should be noted that the sys-
tem performance is very sensitive to the distribution of
the replicas among the nodes. This is due to the fact that
the cost of servicing a request associated with a local oper-
ation is different from the cost of servicing a request asso-
ciated with a remote operation. When more replicas are
allocated, the average cost of servicing a read request will
be smaller, whereas the average cost of servicing a write
request will be higher. Therefore, a crucial decision while
designing an object replication algorithm lies in determin-
ing how many replicas of each object should be present in
the network, and where these replicas should be located,
often referred to as the object allocation scheme [15,16].
In other words, an object allocation scheme identifies the
nodes at which the copies of the object are stored. Obvi-
ously, in a read-intensive network more replicas are benefi-
cial whereas, in a write-intensive network fewer copies will
be recommended.

The example in Fig. 1 further illustrates our motivation,
with a system consisting of 8 nodes. In Fig. 1(a), Nodes 1,
2, and 3 read an object from Node A through Node B. In this
case, if the system can generate a replica of the object in Node
B, it will improve the request response time, and the network
bandwidth utilization between Node A and B. After the rep-
lica in Node B is created, however, there is no more read
requests from Nodes 1, 2, and 3, but only write requests from
Nodes 4, 5, and 6 that want to update the object, as shown in
Fig. 1(b). In this case, it would be better for the system to
remove the replica in Node B (for the same reason to create
replica in Node B), as long as the object reliability require-
ment (such as number of replicas) can be satisfied. Neverthe-
less, the request pattern in a real system is generally random
and unpredictable. It is therefore necessary to design a sys-
tem that can dynamically adjust the number and locations
of object replicas, based on the current and history request
information, so as to maximize the system performance.

In this paper, we first propose a mathematical cost
model that considers the cumulative cost of all the opera-
tions involved in servicing read or write requests, i.e., con-

trol-messages passing cost, data-messages passing cost, and
I/O cost. Using this model, we design an efficient algo-
rithm, referred to as Adaptive Distributed Request Window

(ADRW) algorithm. The ADRW algorithm uses request
windows to track the read/write on-line requests and
dynamically adjust the object allocation scheme. Based on
the decision of the request window mechanism, our objec-
tive is to minimize the total servicing cost of arriving read/
write requests. The focus of this paper is to provide a rig-
orous theoretical framework and analysis of our proposed
adaptive algorithm, from both the theoretical results
derived and an actual PC-based experimental set-up. From
theoretical standpoint, we use competitive analysis to
quantify the performance of the ADRW algorithm. From
the practical perspective, we carry out experiments to
quantify the performance of ADRW algorithm under sev-
eral influencing conditions, such as the request window size
and the mean probability of read/write request in the sys-
tem. The experimental results show that the ADRW algo-
rithm is more adaptive and is superior in terms of the
average cost of servicing a request. Further, based on the
mean probability of read/write request, the experimental
requests give more insights on designing object replication
strategies for distributed network systems.

The rest of this paper is organized as follows. In Section
2, we present our ADRW algorithm, including the network
model, cost model, and request window mechanism consid-
ered in this paper. In Section 3, using the competitive anal-
ysis, we evaluate the performance of ADRW algorithm
from the theoretical standpoint. In Section 4, we implement
the ADRW algorithm and study its performance under
several influencing conditions by comparing with two other
related algorithms in the literature. In Section 5, we intro-
duce the related works and lastly, in Section 6, we conclude
by summarizing this paper and discuss some possible
future extensions.

2. ADRW Algorithm

2.1. Network model and notations

In this paper, we consider a distributed network system
with n nodes, denoted as p1; p2; . . . ; pn, interconnected via a
message-passing communication network. Each node com-
prises a processor and a local memory (or disk drives). All
the local memories are private and accessible only by their

A2

1

3

B 5

6

4

A2

1

3

B 5

6

4

(a) Nodes 1, 2 and 3 read object from Node A (b) Nodes 4, 5 and 6 update object in Nodes A and B 

Fig. 1. Illustration of our motivation.

2006 L. Wujuan, B. Veeravalli / Computer Communications 31 (2008) 2005–2015



Download English Version:

https://daneshyari.com/en/article/450373

Download Persian Version:

https://daneshyari.com/article/450373

Daneshyari.com

https://daneshyari.com/en/article/450373
https://daneshyari.com/article/450373
https://daneshyari.com

