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a b s t r a c t 

Scheduling wireless links for simultaneous activation in such a way that all transmissions 

are successfully decoded at the receivers and moreover network capacity is maximized is 

a computationally hard problem. Usually it is tackled by heuristics whose output is a se- 

quence of time slots in which every link appears in exactly one time slot. Such approaches 

can be interpreted as the coloring of a graph’s vertices so that every vertex gets exactly 

one color. Here we introduce a new approach that can be viewed as assigning multiple 

colors to each vertex, so that, in the resulting schedule, every link may appear more than 

once (though the same number of times for all links). We report on extensive computa- 

tional experiments, under the physical interference model, revealing substantial gains for 

a variety of randomly generated networks. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Let L be a set of wireless links, each link i ∈ L character- 

ized by a sender node s i and a receiver node r i . Depending 

on the spatial disposition of such nodes, activating more 

than one link simultaneously creates interference that may 

hamper the receivers’ ability to decode what they receive. 

In the physical interference model [1] , the chief quantity 

governing receiver r i ’s ability to decode what it receives 

from s i when all links of a set S containing link i are active 

is the signal-to-interference-and-noise ratio (SINR), given 

by 

SINR (i, S) = 

P/d αs i r i 
N + 

∑ 

j∈ S\{ i } P/d αs j r i 
, (1) 

where P is a sender’s transmission power (assumed the 

same for all senders), N is the noise floor, d ab is the Eu- 

clidean distance between nodes a and b , and α > 2 deter- 

mines the law of power decay with Euclidean distance. We 
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say that a nonempty subset S of L is feasible if no two of 

its members share a node (in case | S | > 1) and moreover 

SINR( i , S ) ≥ β for all i ∈ S , where β is a parameter related 

to a receiver’s decoding capabilities (assumed the same for 

all receivers) and is chosen so that β > 1. 

Several strategies have been devised to maximize net- 

work capacity, either through the self-contained schedul- 

ing of the links in L for activation [2–20] or by combining 

link scheduling with other techniques [21–29] . All these 

strategies revolve around formulations as NP-hard opti- 

mization problems, so all rely on some form of heuristic 

procedure drawing inspiration from various sources, some 

more of an intuitive nature [3–7,9,10,12–17,19–24,26,28] , 

others more formally grounded on graph-theoretic notions 

[2,8,11,18,29] . Often the problem is formulated in a spatial 

time-division multiple access (STDMA) framework, that is, 

assuming essentially that time is divided into time slots, 

each one accommodating a certain number of simultane- 

ous link activations. In this case, the problem is to find T 

feasible subsets of L , here denoted by S 1 , S 2 , . . . , S T , mini- 

mizing T while ensuring that every link appears in exactly 

one of the T subsets. 
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There is a sense in which this formulation can be in- 

terpreted in the context of coloring a graph’s vertices. To 

see this, first recall that to color a graph’s vertices is to 

partition them into independent sets (that is, into vertex 

subsets that contain no two neighbors in the graph), each 

of these sets corresponding to a color. An optimal vertex 

coloring is obtained when no partition into fewer inde- 

pendent sets is possible. Depending on the application at 

hand, and letting I denote the set of all the graph’s inde- 

pendent sets, it may be necessary to rule out some of the 

members of I, i.e., to forbid their appearance in any par- 

tition. In the specific case of scheduling the links in L for 

simultaneous activation, we begin by defining a basic con- 

flict graph, denoted by C , whose set of vertices is the set 

of links L and whose set of edges consists of all pairs of 

links that are not feasible sets. That is, the edge set of C 

contains all link pairs ( x , y ) such that { s x , r x } ∩ { s y , r y } � = ∅ 
(links x and y have nodes in common), or SINR( x , { x , y }) 

< β , or SINR( y , { x , y }) < β . If we attempted to schedule 

the links in L by coloring the vertices of graph C and using 

each of the resulting independent sets as the set of links 

to be scheduled in each time slot, clearly some indepen- 

dent set S with | S | > 2 might turn up as part of the solu- 

tion such that SINR( x , S ) < β for some link x ∈ S . Such a 

schedule would not do, so we must further restrict the in- 

dependent sets that the partitioning for vertex coloring can 

choose from, specifically by forbidding any independent set 

that is not feasible. 

With this notion of a generalized form of graph coloring 

in place, the schedule given by the sequence S 1 , S 2 , . . . , S T 
of feasible link sets can be regarded as the product of col- 

oring the vertices of graph C with T colors in such a way 

that all vertices in S k get color k . This interpretation sug- 

gests a further generalization, now allowing every link to 

appear not in exactly one of the T subsets but in any num- 

ber of them, provided this number is the same for all links. 

What we have now is no longer simply our generalized 

form of vertex coloring, but a generalized form of vertex 

multicoloring. To multicolor the vertices of a graph in this 

generalized sense, and assuming that q ≥ 1 is the num- 

ber of distinct colors to be assigned to each vertex, is to 

identify a certain number of independent sets of graph C 

(avoiding the forbidden ones) such that every vertex be- 

longs to exactly q of them. To do so optimally is no longer 

to minimize the total number of colors, but rather to min- 

imize the ratio of such a number to q . Returning to the 

scheduling context, we no longer look to minimize the 

number T of time slots, but look instead for the values of T 

and q that minimize T / q . Now the schedule S 1 , S 2 , . . . , S T of 

feasible link sets can be regarded as resulting from multi- 

coloring the vertices of C with T colors in such a way that 

color k is assigned to all vertices in S k and that every ver- 

tex receives exactly q distinct colors. 1 

1 The reader familiar with the theory of hypergraphs will notice that 

forbidding independent sets of graph C while coloring or multicoloring 

its vertices is equivalent to coloring or multicoloring, respectively, the ver- 

tices of a hypergraph [30] . In this hypergraph, the vertices are the same 

as in graph C and the hyperedges are the nonempty subsets of links that 

are not feasible (and therefore include those pairs of links that are edges 

in C ). 

The potential advantages of this multicoloring-based 

formulation are tantalizing. If the original formulation 

leads to a number T of time slots while the new one leads 

to T ′ > T time slots for some q > 1, the latter schedule 

is preferable to the former, even though it requires more 

time slots, provided only that T ′ / q < T (or qT > T ′ ). To see 

that this is so, first note that the longer schedule promotes 

an overall number of link activations given by q | L | in T ′ 
time slots. In order for the shorter schedule to achieve this 

same number of activations, it would have to be repeated 

q times in a row, taking up qT > T ′ time slots. 

The possibility of multicoloring-based link schedul- 

ing in the physical interference model seems to have 

been overlooked so far, despite the recent demonstration 

of its success in the protocol-based interference model 

[29] . Here we introduce a heuristic framework to obtain 

multicoloring-based schedules from the single-color sched- 

ules produced by any rank-based heuristic (i.e., one that 

decides the time slot in which to activate a given link 

based on how it ranks relative to the others with respect 

to some criterion; cf., e.g., [3,5,9,11,13,17,20] ). We use two 

iconic single-color heuristics (GreedyPhysical [3] , for its 

simplicity, and ApproxLogN [9,17] , for its role in establish- 

ing new bounds on network capacity), as well as a third 

one that we introduce in response to improvement oppor- 

tunities that we perceived in the former two. Incidentally, 

the latter heuristic, called MaxCRank, is found to perform 

best both as a stand-alone, single-color strategy and as a 

base for the multicoloring scheme. All three single-color 

heuristics run in time polynomial in | L |. 

Before continuing, we note that the problem we 

address, that of maximizing network capacity by link 

scheduling in the physical interference model, though the 

same as the one considered in [1,3,9,17] , is only one of a 

great variety of problems that likewise must face the many 

constraints imposed by the need to circumvent the ef- 

fects of electromagnetic interference in wireless networks. 

Such problems relate to various aspects of network design, 

such as node placement [31–34] and frequency assignment 

[35,36] , to name two prominent ones. Some of them take 

into account some form of end-to-end communication de- 

mand [31–35] , while others, as in our case in this paper, do 

not [36] . In a similar vein, the adoption of vertex-coloring 

and -multicoloring notions to inform our approach is by no 

means exclusive. In fact, often the proposed solutions to 

those related problems are closely based on some form of 

vertex coloring [34–36] , including in the case of [35] – and, 

incidentally, of GreedyPhysical with non-unit demands [3] 

as well – the possibility of assigning more than one color 

to the same vertex (though not in as strict a meaning of 

vertex multicoloring as the one we adopt, since in those 

cases the number of distinct colors to be assigned to each 

vertex is fixed beforehand, as opposed to being part of the 

solution). 

We proceed by first discussing single-color sched- 

ules in Section 2 , where the three heuristics mentioned 

above are explained in relation to a single overarching 

template. Then we move to multicoloring-based sched- 

ules in Section 3 , introducing our heuristic framework 

for single-color schedules to be automatically turned into 

multicoloring-based ones. Our computational results are 
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