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a b s t r a c t

We consider a variant of the online buffer management problem in network switches, called

the k-frame throughput maximization problem (k-FTM). Large data, called frames, carried on the

Internet are split into small k packets by a sender, and the receiver can reconstruct each frame

only if he/she accepts all the k constituent packets of the frame. Packets pass through network

switches on the Internet, and each switch is equipped with a FIFO buffer to temporarily store

arriving packets. Since the size of the buffer is bounded, some packets must be discarded if it

is full. It is impossible to reconstruct frames including discarded packets any more. Our goal

is to maximize the number of reconstructed frames. Kesselman et al. proposed this problem,

and showed that any online algorithm has an unbounded competitive ratio even when k = 2.

Hence, they considered the “order-respecting” variant of k-FTM. They showed that the com-

petitive ratio of their algorithm is at most ( 2kB
�B/k� + k) for any B ≥ k, where B is the size of the

buffer. Also, they gave a lower bound of B
�2B/k� on the competitive ratio when 2B ≥ k and k is

a power of 2. Furthermore, they proved that the competitive ratio of a greedy algorithm is at

most (11 + 8
B−1

) for any B ≥ 2 and k = 2.

We analyze a greedy algorithm for k = 2, and show that its competitive ratio is at most 3

for any B, improving the previous upper bound of 4B
�B/2� + 2( ≥ 10). Moreover, we show that the

competitive ratio of any deterministic algorithm is at least 3 for any B if k = 2, which matches

our upper bound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Large and sequential data are currently used by real-time

multimedia applications on the Internet. The data are called

frames, which are too large to be transferred over the Inter-

net. (For example, each frame in the case of video data cor-

responds to each picture of the video.) Thus, they are frag-

mented into small packets. When all the packets arrive at the

✩ A preliminary version of this paper was presented at the 20th Interna-

tional Colloquium on Structural Information and Communication Complex-
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receiver, each frame is reconstructed from the packets. Then,

each packet has to pass through many switches (routers) on

the Internet. Buffer management in the switches can become

a bottleneck for transferring packets to the receiver. In par-

ticular, each switch is equipped with a buffer to store packets

arriving at a burst. However, if the number of arriving pack-

ets surpasses the size of the buffer, the switch has to decide

which packets can be accepted for insertion into its buffer.

Recently, this kind of problem was modeled as online

problems, and a great amount of work has been done. Many

models have been proposed, of which the most basic one is as

follows [1]: A switch is equipped with a buffer (FIFO queue)

of bounded size B. An input consists of a sequence of events.

Each event is an arrival event or a send event. At an arrival
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event, one packet arrives at an input port. Each packet is of

unit size and has a value that represents its priority. A buffer

can store packets provided that the total size of stored pack-

ets does not exceed B, namely, a switch can store up to B pack-

ets at the same time. Stored packets are delivered in the FIFO

order. At an arrival event, if the buffer is full, the new packet

is rejected. If there is room for the new packet, an online pol-

icy determines, without knowledge of the future, whether

to accept the packet. At each send event, the packet at the

head of the queue is transmitted. The goal of the problem is

to maximize the sum of the values of the transmitted pack-

ets. The performance of an online algorithm is evaluated by

competitive analysis [5,17]. If, for any input σ , a determinis-

tic online algorithm ALG gains the benefit, which is at least

1/c of the optimal offline policy for σ , then we say that ALG is

c-competitive.

Kesselman et al. [13] focused on the buffer manage-

ment with frame reconstruction, and formulated the k-frame

throughput maximization problem (k-FTM), where k ( ≥ 2) is

an integer. Each arriving packet belongs to some frame, and

every frame consists of exactly k packets. We say that a frame

f is completed if all the packets constituting f are transmitted.

Otherwise, we say that f is incomplete. Our goal is to maxi-

mize the number of completed frames.

Previous Results. Kesselman et al. [13] showed that the

competitive ratio of any algorithm for k-FTM is unbounded

even when k = 2. The order of arrival of each packet in the

instance used in the proof does not have the relation be-

tween packets in different frames. However, such an instance

does not reflect the actual situation of networks since each

packet generally arrives in the order of departure in a net-

work such as a IP network. Hence, the authors introduced

the order-respecting setting as follows: For any frame f, and

the i( ∈ [1, k])th arriving packet p which is included in f, we

call p the i-packet in f. The arrival order of the j-packets of

frames fi and fi′ must obey the arrival order of the j′-packets

of fi and fi′ (j′ < j) (a formal definition will be given later).

We call the k-FTM problem in the order-respecting setting

the order-respecting k-frame throughput maximization prob-

lem (k-OFTM).

For the k-OFTM problem, Kesselman et al. showed a lower

bound of B
�2B/k� on the competitive ratio for any determin-

istic algorithm, where B ≥ k/2 and k is a power of 2. Also,

they presented a ( 2kB
�B/k� + k)-competitive deterministic algo-

rithm when B ≥ k. The authors proved that for k ≥ 3, a greedy

algorithm for k-OFTM is not competitive. They also showed

that the competitive ratio of the preemptive greedy algo-

rithm for 2-OFTM is at most 11 + 8/(B − 1) for any B ≥ 2.

(Roughly speaking, the greedy algorithm is defined as fol-

lows: The most preferable packets are 2-packets whose cor-

responding 1-packets have already been transmitted, and the

second most preferable ones are both 1-packets and the cor-

responding 2-packets which have already arrived but not yet

been transmitted.).

Our results. In this paper, we analyze a greedy algorithm

(GR) for 2-OFTM, and improve the upper bound from 2kB
�B/k� +

k = 4B
�B/2� + 2 ≥ 10 to 3 for any B. (When modifying some of

the tie-breaking rules of the greedy algorithm by Kesselman

et al. [13], we can have GR. The formal definition of GR in-

cluding the tie-breaking rules is described in Section 2.2.)

Furthermore, we prove a lower bound of 3 for any determin-

istic algorithm for any B in 2-OFTM, which matches our up-

per bound. In computational complexity theory, it is common

to evaluate the performance of algorithms by its asymptotic

behavior, e.g., when k approaches infinity. However, from a

practical point of view, it is natural to assume that the num-

ber of packets constructing each frame, namely k, is bounded.

Thus, it is significant to analyze the case where k is constant.

In addition, GR is easy to implement and has a lower com-

putational load than any other algorithm. Hence, it is mean-

ingful to analyze the exact performance of GR. Our contribu-

tion in this paper is to show that GR is the best policy for

2-OFTM.

Let us briefly explain our idea of improvement. Our main

idea is to “assign” packets in frames completed by an online

algorithm ALG to the 1-packet in each frame completed by an

optimal offline algorithm OPT at the end of the input. Suppose

that any 1-packet (2-packet, respectively) in ALG’s completed

frame is assigned at most x times (y times, respectively).

Then, it can be shown that the competitive ratio of ALG is at

most x + y. If the authors in [13] had showed the competitive

ratio of some greedy algorithm is at most 11 + 8/(B − 1) us-

ing “assignments” of packets, x = 1 and y = 2 + 8(1 + 1
B−1 )

would have been proven. (Note that they did NOT use “as-

signments”.) We prove that the assignment such that x = 1

and y = 2 can be constructed in order to show that the com-

petitive ratio of GR is at most 3. We construct the assignments

with time. Specifically, we try to assign each GR’s packet at

the time when it arrives at the buffer. However, when as-

signing GR’s 1-packet p1 to OPT’s 1-packet, we do not know

whether or not to complete the frame f including p1 in the fu-

ture. Specifically, the 2-packet in f can be discarded by GR af-

ter p1 is transmitted. If p1 is assigned to some 1-packet which

arrives at OPT’s buffer, the competitive ratio of GR cannot cor-

rectly be evaluated. To that end, if we assign the 1-packet in

an incomplete frame, (that is, the 2-packet corresponding to

the 1-packet is discarded by GR), then we assign a packet

in a completed frame to the discarded 2-packet. Hence, we

can bound the competitive ratio of GR from above. To real-

ize the above assignments and attain the tight competitive

ratio, we need to classify all the packets into a large number

of categories, and do exhaustive case analysis with respect to

them. In addition, for some cases, it is necessary to consider

not only the time when they occur but also some earlier mo-

ments. For example, in order to prove a certain case where

some 2-packet p2 is rejected by GR, we need to keep track

of the state of assignments from the time when the 1-packet

corresponding to p2 arrives to the time when p2 is rejected.

The most part of the paper is devoted to the proofs to guar-

antee the assignments in each case. If we simplify our assign-

ment routine or reduce the packet categories in our analysis

to shorten the proofs, the upper bound on the competitive

ratio must be larger.

After the preliminary version of this paper appeared on

SIROCCO2013, Kawahara et al. [10] gave a lower bound of
2B

�B/(k−1)� + 1 for deterministic online algorithms for any k ≥
2 and any B ≥ k − 1, which is 3 when k = 2. That is, they

generalized our lower bound shown in this paper. Also, they

improved an upper bound of O(k2) by Kesselman et al. to
5B+�B/k�−4

�B/2k� = O(k) for B ≥ 2k. Note that this is tight up to a
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