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Odor stimuli reaching olfactory systems of mammals and

insects are characterized by remarkable non-stationary and

noisy time series. Their brains have evolved to discriminate

subtle changes in odor mixtures and find meaningful variations

in complex spatio-temporal patterns. Insects with small brains

can effectively solve two computational tasks: identify the

presence of an odor type and estimate the concentration levels

of the odor. Understanding the learning and decision making

processes in the insect brain can not only help us to uncover

general principles of information processing in the brain, but it

can also provide key insights to artificial chemical sensing. Both

olfactory learning and memory are dominantly organized in the

Antennal Lobe (AL) and the Mushroom Bodies (MBs). Current

computational models yet fail to deliver an integrated picture of

the joint computational roles of the AL and MBs. This review

intends to provide an integrative overview of the computational

literature analyzed in the context of the problem of

classification (odor discrimination) and regression (odor

concentration estimation), particularly identifying key

computational ingredients necessary to solve pattern

recognition.
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Introduction
Decision making is a central process in the brain, enabling

living systems to identify objects and scenarios, choose

among alternatives, and decide how and when to react [1–
6]. Survival depends on the ability to make decisions and

its adaptation to different environments. Such processes

commonly rely on two critical components [7]: (i) the

prediction of environmental changes (regression), and

(ii) the recognition of patterns to discriminate situations

(classification). Both functions are solved based on the

information obtained by sensory circuits. This sensory

modality, present in all forms of life, is central for a wide

range of tasks in the insect brain and takes a major share of

the neural circuits [7,8].

The nature of the olfactory stimulus is stochastic and non-

stationary: wind transports gases by turbulent flows that

induce complex filaments [9–11] (see Figure 1). Although

pattern recognition of gases is challenging for modern

artificial sensors [9,12], evolution has provided even the

simplest nervous systems with the ability to extract all

necessary information for survival by exploiting the ran-

dom nature of the stimuli [13,14].

Our goal here is to review the state of the art in compu-

tational models in insect olfaction related to decision

making functions. Since the main centers of learning

and memory are the Mushroom Bodies (MBs) [16,7], this

review will mostly concentrate on relating the Antennal

Lobe (AL) and MB functions.

Antennal Lobe function: feature extraction
Thanks to the simplicity of the structural organization,

the nature of the neural coding, genetic manipulation

techniques, and extensive odor conditioning exper-

iments, the main brain modules involved in olfactory

pattern recognition have been identified: the Antennae

are sensors, capturing odor information through olfactory

receptor cells; the ALs and MBs are respectively feature

extraction and pattern recognition devices. Specifically,

the AL receives input from the receptor cells that deliver

the information into particular sets of glomeruli [17],

constructing a genetically induced chemosensory map

that remains the same across individuals from the same

species [18,19]. In principle this peripheral olfactory

structure already seems to be able to discriminate among

odors at this early stage [13,20–22]. However, since the

insect is freely moving as odor plumes flow through the

air, the signal arriving at the AL is noisy and non-station-

ary [13] (see Figure 1).

Computational models using realistic AL neuron models

claim that odor identity can be encoded quickly for pattern

recognition purposes, while the concentration is encoded

by the mean latency of the neural response [14]. Moreover,

many experiments have demonstrated the presence of

spatio-temporal patterns in the first stage of the olfactory

system of invertebrates and vertebrates [23–27], resulting
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from balanced excitation and inhibition in their network

[28–30]. Even though mammals and insects can recognize

odors fairly quickly [31–33], temporal coding is also present

to improve discrimination performance and odor concen-

tration estimation [32,34–36,11].

This spatio-temporal coding regulated by an excitation-

inhibition balance in the AL is controlled by Projection

Neurons (PNs), which are excitatory, and Lateral Neurons

(LNs), mostly inhibitory. PNs and LNs communicate

through glomeruli [37–40] and have been thoroughly mod-

eled over the past few years to investigate robust and

reproducible spatio-temporal coding [14,41,42], concen-

tration estimation [41,14], contrast enhancement mediated

by lateral inhibition [43], gain control mechanisms [44–46],

and information filtering [47,48]. There is an agreement

that the inhibition provided by the LN neurons improves

neural code to make the discrimination task easier. We also

know that the inhibitory network is capable of expanding

the coding space using spatio-temporal patterns. Yet, we

are still lacking the connection between the AL code and

the MB function.

The computational blueprints of the
Mushroom Bodies
Even in honeybees, insects with no more than a

million neurons [8], 35% of its neurons are in the MBs.

The MBs integrate multimodal information (idea used in

computational models [49]) and are at the focal point of

learning and memory [50,51,16]. They also undergo sig-

nificant synaptic and neural changes mediated by beha-

vioral odor conditioning experiments [52,53,33].

Before reaching the MBs (see Figure 2), the olfactory

information travels from the Antenna (representing 20%

of the insect brain) to the AL, which connects the receptor

cells to the MBs and constitutes only 2% of the insect brain.

Thus there is a compression of information from the

sensors to the AL. Subsequently, there is an inflation of

sensor information from the AL to the MBs (see Figure 2).

An effective approach to use this information and under-

stand how the insect brain solve pattern recognition pro-

blems consists of using a combination of Hebbian learning

and mutual competition via inhibition [4,44,54–56,49], a

broadly accepted paradigm [57,58]. The inhibition leads to

competing trends in the output neurons, where the classi-

fication is poised at the ‘winning’ neuron(s) (see the output

layer in Fig. 2). Connectionists models predicted the need

of strong lateral inhibition in the output layer of the MBs for

classification [59,54]. Later experimental observations con-

firmed its presence in the b-lobe neurons in the MBs of the

locust [60].

Another interesting hypothesis is that the MBs are a large

screen where one can easily discriminate objects using
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Figure 1
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Time series recorded using artificial sensor arrays designed for discriminating volatile organic compounds and quantifying concentrations in a wind

tunnel. Left: Dataset from an array of 8 metal-oxide gas sensors in presence of carbon monoxide, publicly available at UCI Machine Learning

Repository [9]. Right: example of the traditional three phases sampling process applied under controlled conditions (shown on top) and a few time

series recorded by a mobile robot in an uncontrolled environment (bottom) [15].
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