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a  b  s  t  r  a  c  t

Many  crop  growth  models  require  daily  meteorological  data.  Consequently,  model  simulations  can  be
obtained  only  at a limited  number  of  locations,  i.e. at weather  stations  with  long-term  records  of  daily
data.  To  estimate  the  potential  crop  production  at country  level,  we  present  in  this  study  a  geostatistical
approach  for  spatial  interpolation  and  aggregation  of  crop  growth  model  outputs.  As case  study,  we
interpolated,  simulated  and aggregated  crop  growth  model  outputs  of  sorghum  and  millet  in  West-
Africa.  We  used  crop  growth  model  outputs  to calibrate  a  linear  regression  model  using environmental
covariates  as  predictors.  The  spatial  regression  residuals  were  investigated  for  spatial  correlation.  The
linear regression  model  and  the  spatial  correlation  of  residuals  together  were  used to  predict  theoretical
crop  yield  at  all  locations  using  kriging  with  external  drift.  A  spatial  standard  deviation  comes  along
with  this  prediction,  indicating  the uncertainty  of  the  prediction.  In combination  with  land  use data
and  country  borders,  we  summed  the  crop  yield  predictions  to determine  an  area  total.  With  spatial
stochastic  simulation,  we  estimated  the  uncertainty  of  that  total  production  potential  as  well as  the
spatial  cumulative  distribution  function.  We  compared  our results  with  the  prevailing  agro-ecological
Climate  Zones  approach  used  for spatial  aggregation.  Linear  regression  could  explain  up to  70%  of  the
spatial  variation  of  the  yield.  In  three  out  of four cases  the regression  residuals  showed  spatial  correlation.
The  potential  crop  production  per  country  according  to  the  Climate  Zones  approach  was  in all  countries
and  cases  except  one  within  the  95%  prediction  interval  as  obtained  after  yield  aggregation.  We concluded
that  the geostatistical  approach  can  estimate  a country’s  crop  production,  including  a  quantification  of
uncertainty.  In  addition,  we stress  the  importance  of  the  use  of  geostatistics  to  create  tools  for  crop
modelling  scientists  to explore  relationships  between  yields  and spatial  environmental  variables  and  to
assist  policy  makers  with  tangible  results  on yield  gaps  at multiple  levels  of spatial  aggregation.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To support research and decision making related to global food
security, mechanistic crop growth models are frequently used to
calculate the potential yield of a food crop in a certain area and

Abbreviations: CZ, agro-ecological climate zones; GYGA, global yield gap atlas;
KED, kriging with external drift; LOOCV, leave one out cross validation; REML,
restricted maximum likelihood estimation; RVH, regressor variable hull; RWS, ref-
erence weather station, reference weather station location; SCDF, spatial cumulative
distribution function; sd, standard deviation; se, standard error; SPAM, spatial plant
allocation model; WOFOST, world food studies; Yp, yield potential; Yw, water-
limited yield potential.

∗ Corresponding author.
E-mail addresses: luc.steinbuch@wur.nl, lst@dds.nl (L. Steinbuch).

context. These models describe the build-up of harvestable biomass
as a result of the interaction between plant physiology and envi-
ronment (Roudier et al., 2011; van Ittersum et al., 2013). Many of
these models require accurate daily meteorological data, prefer-
ably observations, instead of interpolated grid based data, due to
the non-linearity of many weather–crop relationships (van Bussel
et al., 2011; van Wart et al., 2013a). In addition, detailed and locally
relevant information about crop management and soil information
are required for accurate crop growth simulations (van Ittersum
et al., 2013). Consequently, model simulations can only be obtained
on a limited number of locations, i.e. close to weather stations with
long-term records.

In several studies average crop estimates for large areas have
been obtained by spatially aggregating location-specific crop model
simulations, see e.g. Rosenzweig and Parry (1994), Wolf and Diepen
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(1995) and Alexandrov et al. (2002). A recently implemented
approach is based on so-called agro-ecological Climate Zones (CZ)
(van Wart et al., 2013b), applied e.g. in the Global Yield Gap
Atlas (GYGA; www.yieldgap.org) (van Bussel et al., 2015). In this
approach it is assumed that CZ are regions that are homogeneous
with respect to climate conditions. The CZ approach is a straightfor-
ward and clear example of the calculate > interpolate > aggregate
class of spatial aggregation approaches. An important drawback
of this approach is that it ignores spatial variation of crop growth
simulations within the climate zones, i.e. within these zones the
simulated crop growth is assumed constant. Incorporating spa-
tial variation could improve the spatial resolution and accuracy of
the final results and thus help supporting national and local pol-
icy decisions, prioritizing investment strategies of fertilizer and
seed companies and NGO’s. The CZ approach also fails to quantify
the uncertainties associated with the interpolation and aggre-
gation steps, which is essential information to guide accuracy
improvement strategies (van Bussel et al., 2016). In this study we
therefore explore whether the drawbacks of the CZ approach can
be overcome with the help of a geostatistical approach. Geostatis-
tics provides tools for a coherent quantification of site-specific as
well as aggregated modelled crop yield prediction uncertainties. It
produces continuous spatial maps that provide valuable location-
specific information for crop modellers as well as decision makers
and yields graphs that indicate areal proportions below or above a
potential yield level threshold for regions or countries. It also offers
means to explore the relationships between calculated yields and
explanatory environmental variables.

The aims of this study are to present a state-of-the art
model-based geostatistical method for spatial interpolation and
aggregation of simulated yields, to illustrate it with a case study,
and to compare the results with those of the common CZ approach.
More specifically, we use kriging with external drift (KED), sup-
ported by restricted maximum likelihood parameter estimation
(REML; Lark 2000; Diggle and Ribeiro, 2007). Additionally, we  use
spatial stochastic simulation to predict aggregated crop production
at country level and its associated uncertainty. As a case study, we
interpolate and aggregate modelled yields of sorghum (Sorghum
bicolor) and millet (e.g. Pennisetum glaucum, Eleusine coracana) in
West Africa, as provided by the crop growth model WOFOST (Wolf
et al., 2011; Supit et al., 2012).

2. Materials and methods

2.1. Study area

This study has been carried out in West Africa, focussing on
Burkina Faso, Mali, Ghana, Niger and Nigeria. Most of this area
consists of a low plateau of maximal 500 m above sea level, with
some mountainous areas up to 2040 m.  The daily mean temper-
ature is almost always and everywhere (except at high altitudes)
above 18 ◦C and relatively stable during the year. The most dynamic
weather pattern is precipitation, dictated by dry winds from the
Sahara in the north, dominant from November until February,
and by the moist southwest marine wind, dominant in July (von
Kaufmann et al., 1983).

2.2. Modelled crop yield data

Modelled crop yields for sorghum at 38 (Fig. 1) and millet at
37 Reference Weather Station locations (RWS) were obtained from
the Global Yield Gap Atlas (www.yieldgap.org). Two yield levels,
yield potential (Yp) and water-limited yield potential (Yw), were
simulated using the crop growth model WOFOST version 7.1.3
(release March 2011) (Wolf et al., 2011; Supit et al., 2012). The yield

Table 1
Summary statistics of crop growth model yields Yp and Yw,  for sorghum and millet.
‘n’  is the number of observations, i.e. the number of modelled crop yields per case.
‘Skewness’ refers to the asymmetry of the dataset values.

Units Research cases

Sorghum Yp Sorghum Yw Millet Yp Millet Yw

n [–] 38 38 37 37
Mean [t/ha] 7.50 6.21 4.23 3.02
Standard deviation [t/ha] 1.17 2.00 1.02 1.40
Skewness [–] −0.15 −0.45 −0.66 0.09
Min  [t/ha] 5.04 2.04 1.21 0.56
Max  [t/ha] 9.96 9.71 5.90 5.80

potential is determined by solar radiation, temperature and carbon
dioxide concentration; there are no limitations due to water stress,
low soil fertility, weeds, pests, etc. The yield potential is further
influenced by management practices like sowing date and culti-
var choice. The water-limited yield potential, i.e. rainfed yield, is
defined similar as Yp, except that possible water stress is taken
into account (Evans 1996; van Ittersum and Rabbinge, 1997).

The 38 and 37 locations used in the crop yield modelling were
selected on: (1) the basis of proximity of weather stations with
high-quality weather data, which are located in areas with high
crop densities as indicated by You et al. (2006) and You et al. (2009);
see also http://mapspam.info) and (2) the dominant representa-
tion of the crop growing conditions in terms of weather, soils and
cropping system for the countries of interest. Sorghum and millet
share the same location 32 times. The final numbers of Yw on each
location are area-weighted means of several simulations for dom-
inant soil types; both Yp and Yw are averaged over multiple years
of simulation (Grassini et al., 2015; van Bussel et al., 2015). Sum-
mary statistics of simulated Yp and Yw for sorghum and millet are
provided in Table 1.

2.3. Trend model covariates

In the kriging procedure described hereafter, we used grid maps
of environmental and meteorological variables that are expected to
be related to the simulated crop yield. To stay as close as possible
to the agro-ecological Climate Zones method, we decided to use for
all four cases a trend model with the three covariates used in the
CZ approach (Table 2).

2.4. Geostatistical modelling

2.4.1. General framework: the geostatistical model
To build a geostatistical model, we  first need to introduce the

idea of a random field. A random field is a set of random variables
indexed by location (Plant, 2012). Additional to the statistical model
of a random variable, a random field has parameters describing its
spatial correlation.

In this paper, we build a statistical model of a random field
for each of the four cases defined in Section 2.2. Thus, the crop
growth model outputs for each case are considered realisations of
four separate random fields. Our general statistical model of each
random field is denoted by Z =

{
Z (s) , s ∈ D

}
(unit: t/ha; s is a

two-dimensional vector, representing geographic location, D is the
geographic domain of interest). At each location s ∈ D, Z (s) is mod-
elled as the sum of a spatial trend (a linear regression part) and a
stochastic residual (a random variable):

Z (s) = ˇ0 +
p∑

i=1

ˇi × xi (s) + ε (s) = X(s)T ×  ̌ + ε (s) (1)

where ˇ0 is the regression intercept, ˇi (i = 1· · ·p) are regression
coefficients associated with the covariates, xi(s) is the ith environ-
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