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a b s t r a c t

As crop modelling has matured and been proposed as a tool for many practical applications, there is
increased need to evaluate the uncertainty in model predictions. A particular case of interest that has
not been treated before is that where one takes into account both uncertainty in the model explanatory
variables and model residual error (the uncertainty in model predictions even when the explanatory
variables are perfectly known). The specific case we consider is that of a model for predicting water
stress of a vineyard. For many of the model explanatory variables, the vine grower (or the farmer advisor)
has a choice between approximate values which are easily obtainable and more precise values that are
more difficult (and more expensive) to obtain. We specifically discuss the explanatory variable “initial
water stress” which is directly based on the initial soil water content and can be estimated or measured
(precise but expensive). The vine grower is interested in the decrease in uncertainty that would result
from measuring initial water stress, but it is the decrease in total uncertainty, including model residual
error, that is of importance.

We propose using accurate measurements of water stress over time in multiple vineyards, to estimate
model residual error. The uncertainty in initial water stress can be estimated if one has approximate and
precise values of initial water stress in several vineyards. We then combine the two sources of error by
simulation thanks to an independence hypothesis; the model is run multiple times with a distribution
of values for initial water stress, and on each day a distribution of model residual errors is added to the
result.

The results show that the resulting uncertainty is quite different in different fields. In some cases,
uncertainty in initial water stress becomes negligible a short time after the start of simulations, in other
cases that uncertainty remains important, compared to model residual error, throughout the growing
season. In all cases, residual error is a substantial percentage of overall error and thus should be taken
into account.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As crop modelling has matured and been proposed as a tool for
many practical applications, there is increased interest in evaluat-
ing the uncertainty in model predictions (Aggarwal and Kalra, 1994;
Aggarwal and Mall, 2002; Lamboni et al., 2009; Wallach et al., 2008;
Wang et al., 2005). If crop models are to be used by farmers, farm
advisors or policy makers as the basis for decisions, it is essential
to have a measure of the reliability of model results.

To date, there have been two major approaches to evaluating the
uncertainty of model predictions. In the first that we will denote
here as “error evaluation studies”, one compares observed and
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simulated values and calculates a criterion of model error, which is
often mean squared error (MSE) (Abedinpoura et al., 2012; Palosuo
et al., 2011; Rötter et al., 2012). If the data used for evaluating error
have not been used for model calibration, then MSE can be used as
an estimate of mean squared error of prediction (MSEP) (Wallach,
2006). To simplify the following discussion, we will assume that
MSE is the criterion used for evaluation, and that it is an unbi-
ased estimator of MSEP. This is an uncertainty calculation in the
sense that it gives information about how uncertain our predic-
tions are; specifically, MSE estimates the average squared distance
between future observed values and simulated values. Here one
is evaluating a model with some fixed set of parameter values and
some fixed way of obtaining the values of the explanatory variables.
The fact that other parameters could have been chosen, or that the
explanatory variables may have some error, is not explicitly consid-
ered. The result is an estimate of MSEP for the model that one has.
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The error here, since it is based on a comparison of simulated and
observed values, automatically includes all sources of error, includ-
ing possible errors in parameters, in input variables or in model
equations (and also errors in the observed values). The MSEP that
one estimates is a single number of average squared error, where
the average is over the range of situations represented by the data.
This type of study does not give information about how error varies
between situations.

The second approach, uncertainty propagations studies, focuses
on the uncertainty in model parameters or input variables, and
explores how those uncertainties propagate through to model
responses, for example yield. There have been numerous studies
of this sort, mainly but not only concerning the uncertainty engen-
dered by parameter uncertainty (Confalonieri et al., 2006; Iizumi
et al., 2009; Post et al., 2008; Wang et al., 2005). Many of these stud-
ies are mainly concerned with ranking the parameters, in order to
identify which parameter uncertainties are mainly responsible for
the uncertainty in model response (sensitivity analysis).

Uncertainty and sensitivity analysis focus on the uncertainty
due to some specific source of uncertainty. If for example the study
specifically examines uncertainty in input values, then the effects
of errors in parameters or in model equations is not taken into
account. In compensation, such studies have two important advan-
tages. First, they allow one to test hypothetical errors in parameters
or inputs. Second, these studies give more detailed information
than evaluation studies. The results are not an average level of
error, but rather an uncertainty which is specific to the conditions
investigated. For example, uncertainty in a model parameter that
enters into the calculation of the effect of water stress may lead to
large uncertainty in situations where there is water stress, but to
no uncertainty in well watered conditions.

There are situations where it is important to combine the advan-
tages of both techniques; one wants an overall measure of error,
but one also wants to explore hypothetical situations and one
wants information on how error varies across situations. An exam-
ple would be using a model to compare management strategies.
Suppose that it is reasonable to assume that input variables are
measured correctly, but some of the parameters are obtained by
calibration and thus have uncertainty due to the calibration process.
One would want both overall error, and also to take into account
the fact that the error related to parameter estimation is differ-
ent for each management strategy. This can be achieved by using a
Bayesian approach that calculates a posterior distribution both for
the model parameters and for model residual error. Wallach et al.
(2008) used such a Bayesian approach to assign uncertainties to a
comparison of different irrigation strategies. (One could also take
into account both parameter uncertainty and residual error using
a frequentist approach to parameter estimation (Seber and Wild,
1989) but this does not seem to have been done for crop models).

A different situation is that where one wants to take into account
both overall error and error arising from incomplete knowledge of
model inputs. This would often be the case for a model to be used
by growers; often some model inputs are difficult to obtain, and so
growers might choose to use approximate values that are easier to
obtain. It is of importance then not only to evaluate the uncertainty
associated with using uncertain input values, but also to compare
that with overall error. There do not seem to have been studies
which combine both estimation of overall error and estimation of
the error specifically due to uncertain input values.

The purpose of this paper is to show how to combine the advan-
tages of model evaluation and uncertainty analysis, in order to
obtain uncertainty estimates for crop models that on the one hand
include all types of error, but on the other still allow one to get
detailed information about the consequences of input uncertainty.

The example we treat concerns a model that is used by growers
to evaluate the water stress dynamics of an intercropped vineyard

(Celette et al., 2010). The model calculates daily the fraction of tran-
spirable soil water (FTSW), which is a water stress index that is used
by growers to assess the dynamics of the water status experienced
by a vineyard (Pellegrino et al., 2006). Managing this water deficit
is an important issue in optimizing grape quality.

The model requires a certain number of input variables, which
can be obtained in different ways. In general there is a choice
between an approximate procedure and a more accurate proce-
dure, often direct measurement. The specific input variable we
treat is FTSW at budburst (FTSW0), when the model calcula-
tions begin. This can be estimated by using model calculations
(described in more detail in the next section), or can be mea-
sured. The grower must choose between the two possibilities.
The model-based estimation is less expensive, but direct mea-
surement is more accurate. The choice will depend on how much
uncertainty in FTSW is introduced by uncertainty in FTSW0. How-
ever, the choice will also depend on the overall uncertainty in
FTSW. This example comes from a larger study that considers the
effect of using approximate values for many different input vari-
ables.

It will be clear that the approach used here could be generalized
to other studies where one wants to combine a consideration of
overall error with consideration of the effect of specific uncertain-
ties in input variables.

2. Materials and methods

2.1. The model and its uncertain inputs

The model here is a model for FTSW in a vineyard. When a
grass cover in present in the intercrop, the water balance is modi-
fied (more transpiration but better infiltration), which requires the
use of a specifically adapted water balance model when assessing
management strategies for grass cover introduction (Ripoche et al.,
2011). Therefore the model here includes both the cases where
there is and where there is not grass cover between the rows
(Celette et al., 2010). This model has been specifically designed
for use by growers, to enable them to estimate the vineyard FTSW
during the growing season as a basis for making decisions on the
introduction of grass cover.

The model inputs that can be obtained more or less accurately
include budburst date, which can be estimated or observed, FTSW
at budburst (FTSW0), which can be estimated or measured, daily
weather, which can be obtained from a weather station at the site
of the field or approximated using a more distant weather station,
runoff curve numbers for bare and covered soil, which can be esti-
mated from runoff measurements or based on plot characteristics,
maximum available water, which can be estimated from soil tex-
ture or measured, etc. We refer to the inputs obtained using the
more accurate approach as the “accurate” values and the values
obtained using the less accurate approach as the “approximate”
values.

Here we consider just the case where we want to study the dif-
ference between using accurate and approximate values of FTSW0
with all the other inputs fixed to their accurate value. The accurate
value of FTSW0 is obtained by measuring FTSW at budburst. The
approximate value for year y is obtained by setting FTSW = 0 at the
end of summer of year y −1 and then running the model to bud-
burst in year y. The rationale is that it is very common to have dry
soil at the end of summer in vineyards in a Mediterranean environ-
ment. However, even if the assumption about soil water at the end
of summer is correct, the approximate value for FTSW0 will still be
subject to error related to model error. Since soil water on any day
is equal to the value on the previous day plus some change, errors in
initial soil water continue to affect soil water on subsequent days.
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