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a b s t r a c t 

In the context of an IP network, this paper investigates an interesting case of the inverse shortest path 

problem using the concept of network centrality. For a given network, a special probability distribution, 

namely the centrality distribution associated with the links of a network can be determined based on 

the number of the shortest paths passing through each link. An entropy measure for this distribution 

is defined, and the inverse shortest path problem is formulated in terms of maximizing this entropy. 

We then obtain a centrality distribution that is as broadly distributed as possible subject to the topology 

constraints. A maximum entropy distribution signifies the decentralization of the network. An appropriate 

change in the weight of a link alters the number of the shortest paths that pass through it, thereby 

modifying the centrality distribution. The idea is to obtain a centrality distribution that maximizes the 

entropy. This problem is shown to be NP-hard, and a heuristic approach is proposed. An application to 

handling link failure scenarios in Open Shortest Path First routing is discussed. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the general context of network design, a well designed topol- 

ogy is the basis for all stable networks [1] . Two main design con- 

siderations for a good network topology design are: (i) reducing 

the single point of failures that can occur in the network; and (ii) 

reducing the hop count between any origin-destination (OD) pair. 

We investigate appropriate topology measurements based on the 

structural properties of the network, and study how these can be 

utilized to determine the maximally efficient topology. In this con- 

text, it is important to study the influence a node or link may have 

on the larger network based on its structural position in the topol- 

ogy. This will help in the identification of critical nodes and/or 

links in the network. A network is said to be highly centralized 

if some of its nodes or links are extremely critical to the operation 

of the network. Such a highly critical node or link conflicts with 

the design goal of eliminating single points of failure. 

In this paper, we investigate a network-wide measurement 

called network centrality to determine the centralization of a 

network, as an instance of graph complexity measure [2] . The 

centrality distribution associated with the nodes or links of a 
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network is determined based on the function of betweenness cen- 

trality values. A network wide measure is arrived by computing 

the entropy of the centrality distribution. We then formulate the 

network topology design problem as a problem of minimizing the 

centralization of the entire network or maximizing the entropy 

of the centrality distribution. We present a few interesting use 

cases of this proposed measure in the context of determining the 

efficiency of routing for a given topology. 

Next, we study the inverse problem of determining the ap- 

propriate centrality distribution using suitable link weight set- 

ting techniques that maximize the entropy. This Centrality Entropy 

Maximization (CEM) problem is inspired by an earlier work called 

Network Entropy Maximization (NEM) [3] , that connects the prin- 

ciple of maximum entropy with Internet Protocol (IP) routing. The 

CEM problem is shown to be NP-hard by reducing the known Open 

Shortest Path First (OSPF) optimal weight setting NP-hard prob- 

lem [4] . We present a heuristic algorithm for the same. It is then 

shown, how this can be useful in handling link failure cases in 

OSPF networks. This paper consolidates and extends our previous 

work presented in [5,6] . 

The important contributions of this paper are summarized as 

follows: (i) studying the applicability of network centrality mea- 

sure for network design problems; (ii) definition, proof of NP- 

hardness and a proposed heuristic solution for the centrality en- 

tropy maximization (CEM) problem; (iii) discuss various applica- 

tions and use cases of the CEM framework including measuring the 

efficiency of routing in IP networks and understanding Braess Para- 
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dox in network routing; and (iv) an application of CEM for network 

topology design in tactical wireless networks. 

The remainder of the paper is organized as follows. 

Section 2 presents the related work on entropy based mea- 

sure of graph complexity and various centrality measures. 

Section 3 presents definitions along with some notations. 

Section 4 introduces the measure of network centrality and its 

variants. In Section 5 , we show how the proposed network cen- 

trality measure can be applied to measure routing efficiency and 

detect Braess’s paradox. Section 6 introduces the CEM problem and 

presents a heuristic approach to solve the same. Section 7 presents 

a use case of handling OSPF link failure case. Section 8 discusses 

the applicability of the proposed measure and the CEM framework 

to other interesting networking problems. Section 9 concludes the 

paper. 

2. Related work 

Centrality measures are often used in social networks to es- 

timate the potential monitoring and control capabilities a person 

may have on communication flowing in the network. The concept 

of centrality has been extended to communication networks. Var- 

ious centrality measures such as degree, closeness, and between- 

ness have been studied in the literature in order to analyze the in- 

ternal topology of a given network [7] . These measures have been 

studied to quantify the influence of nodes or links on the dynamics 

of the entire network. 

Betweenness centrality (BC) is one such graph theoretic concept 

that measures the degree to which a node or a link acts as an 

intermediary in the communication between every pair of nodes 

in the graph or topology. This measure of centrality is higher for 

certain nodes or links indicating that these nodes or links play a 

critical role. More precisely, the betweenness centrality of a node 

or link is determined by its occurrence in the shortest paths be- 

tween pairs of nodes. There are different contexts in which be- 

tweenness centrality measure has been considered in a network [8–

10] . The concept of Routing Betweenness Centrality (RBC) is intro- 

duced in [11] , as a measure of the expected number of packets 

passing through a given node. A new edge betweenness centrality 

called traffic-aware edge betweenness centrality (TEBC) is defined in 

[12] . It is shown that TEBC can be used to influence and improve 

the performance of the shortest-path routing algorithm with re- 

spect to dynamic routing. Note that this metric is based on the 

fraction of traffic flow on an edge, and is used to re-balance the 

link’s importance and lessen the problem of any bottleneck build- 

up on a link. More information on centrality related work can be 

found in [13,14] . 

The concept of node or link centrality has been extended fur- 

ther to the measurement of network centrality or graph centrality 

[7] . There are two distinct views in proposing such a graph- or 

network-wide measure. The first view leads to the development of 

measures of graph centrality based on the degree that all of its 

nodes or links are central. The alternative view leads to the devel- 

opment of measures of graph centrality based on the dominance of 

one node or link. We consider the first approach since it is more 

applicable in the network topology design problem. 

We note that such a network-wide measure of centrality is also 

a measure of graph complexity. Graph complexity can be measured 

based on different structural features of the graph. For example, 

connectivity of a graph is measured based on node connectivity 

or link connectivity. The node or link connectivity is the smallest 

number of nodes or links whose removal results in a disconnected 

graph. This measure has been extended to measure the robustness 

of a network [15] . 

A taxonomy and overview of approaches to the measurement of 

graph complexity are presented in [2] . The taxonomy distinguishes 

between deterministic and probabilistic approaches. In the proba- 

bilistic approach, a probability distribution associated with the ver- 

tices or edges of a graph is determined based on the structural 

properties of the graph. Then, an entropy function is applied to 

the probability distribution to derive the measure of complexity. 

An entropy function measures how close a probability distribution 

is to being uniformly distributed or quantifies the unevenness of 

the probability distribution. 

Shannon’s entropy function [16] is one of the most commonly 

used entropy functions in measuring the complexity of graphs. In 

the context of an entropy function, the Principle of Maximum En- 

tropy aims to determine a uniform or as broad a probability distri- 

bution as possible subject to the available constraints [17,18] . This 

principle has been used in solving some interesting networking 

problems [19,20] . The first work connecting the principle of maxi- 

mum entropy with IP routing is called Network Entropy Maximiza- 

tion (NEM) [3] . 

This section summarized the related work. The next section 

presents the necessary definitions and notations. 

3. Definitions and notations 

This section provides necessary technical background, defini- 

tions and preliminaries of this paper. A network in its simplest 

form is a set of nodes or vertices joined together in pairs by 

edges or links. It can be represented as a directed graph G = (V, E) , 

where V is the set of vertices and E is the set of edges. An edge is 

labeled as ( u, v ) or simply uv , where u, v ∈ V . In a directed graph, 

uv � = vu . For routing purpose, we assume that there are no self- 

loops, and the paths connecting any pair of vertices are loop-free. 

A graph is said to be weighted when we assign weight to each of 

its edges. Let w : E → R ≥0 be the weight function. If G is not pro- 

vided with a weight function on the edges, we assume that each 

edge has unit weight. The weight is represented by w u, v for the 

link ( u, v ) ∈ E . A path in a graph is a finite sequence of edges 

which connect a sequence of vertices which are all distinct from 

one another. A graph is said to be connected when every pair of 

vertices is joined by a path. 

Definition 1 ( Geodesic or Shortest Path ) . Given a connected 

weighted directed graph G ( V, E, w ), associated with each edge 

〈 u, v 〉 ∈ E , there is a weight w ( u, v ). The length of a path p = 

〈 v 0 , v 1 , . . . , v k 〉 is the sum of the weights of its constituent edges: 

w (p) = 

k ∑ 

i =1 

w (v i −1 , v i ) . 

The length of the shortest path from u to v is defined by δ(u, v ) = 

min { w (p) : p is a path from u to v }. δ( u, v ) is called the distance 

between u and v . The path that realizes this distance is called the 

shortest path or geodesic. 

There can be more than one shortest path between a pair of 

nodes. 

Definition 2 (( 〈 s, t 〉 induced subgraph )) . A sub-graph induced by 

the set of paths that connects the given source-destination pair 〈 s, 

t 〉 . The union of paths that begin with s and end with t is called as 

the 〈 s, t 〉 induced subgraph, and is denoted by G st . 

Degree is a count of the number of edges incident upon a given 

node. The degree of a node is the simplest centrality measure of a 

node. It implies that the node with a higher degree has more in- 

coming or outgoing paths, and hence critical to the entire network. 

Dividing it by the maximum possible degree n − 1 gives us a nor- 

malized measure. 

Definition 3 ( Closeness Centrality ) . As defined in [21] , a node’s 

closeness centrality is defined as the sum of the distances from 
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