
Adaptive network-traffic balancing on multi-core software
networking devices

Tomaž Buh a,⇑, Roman Trobec b, Andrej Ciglič a

a Iskratel, Ltd., Kranj, Slovenia
b Institut Jožef Stefan, Dep. of Communication Systems, Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 15 May 2013
Received in revised form 2 January 2014
Accepted 21 April 2014
Available online 29 April 2014

Keywords:
Networking device
Linux Bridge
Multi-core architecture
Load balancing
Traffic distribution
Packet reordering

a b s t r a c t

Software networking devices running on commercial-off-the-shelf hardware offer more
flexibility and less performance than high-end, dedicated, networking devices. However,
this lack of performance can be compensated, to some extent, by multi-core processors
that can manage network packets in parallel. In order to efficiently utilize multi-core archi-
tectures, the processing load and the network traffic must be properly balanced to optimize
the inter-core communication. Here, we analyze the traffic distribution on a per-packet and
per-flow basis and verify the performance of the Linux Bridge networking device. A new,
adaptive, traffic-distribution method is proposed, which combines packet-based and
flow-based traffic distributions. The method was experimentally validated by two test
cases – the ‘‘worst-case’’ scenario, with one dominant flow, and the ‘‘backbone-link’’
scenario, with a large number of flows that have a similar packet rate. In the case of one
dominant flow, the performance in traffic throughput is improved by a factor of 2.8 by
engaging four processing cores. In the case of a large number of traffic flows, the perfor-
mance remains similar to the existing flow-based methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Compared to high-end, professional networking
devices, which require specialized hardware, software-
based networking devices run on commercial-off-the-shelf
(COTS) hardware platforms and thus generally offer less
performance. On the other hand, they are more flexible
and less expensive. As a result software-based networking
devices are often used in cloud computing, where they pro-
vide an efficient communication between virtual machines
by implementing networking functionalities, e.g., bridging.
Furthermore, initiatives such as Network Functions

Virtualization [1] with the support of the Software Defined
Network approach [2] assume the implementation of any
network function on a separate virtual machine, where fast
communications between the virtualized functions are
crucial.

The increased performance of software-based network-
ing devices can be achieved by optimizing the efficiency of
the software and by exploiting all the enhancements of the
COTS platforms, which are the subject of continuous
development. Several approaches, such as multi-level
cache, increased system frequency, instruction-level
parallelism and branch prediction, have been applied to
COTS platforms in order to improve their performance.
However, the effects of all these solutions have now
reached their limits, with the multi-core architecture being
the next step that can offer significantly more performance
while consuming less power. To take advantage of this

http://dx.doi.org/10.1016/j.comnet.2014.04.015
1389-1286/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Address: Iskratel, Ltd., Kranj, Ljubljanska c.
24a, 4000 Kranj, Slovenia. Tel.: +386 (0) 4 207 30 96.

E-mail addresses: buh@iskratel.si (T. Buh), roman.trobec@ijs.si
(R. Trobec), ciglic@iskratel.si (A. Ciglič).

Computer Networks 69 (2014) 19–34

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.04.015&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.04.015
mailto:buh@iskratel.si
mailto:roman.trobec@ijs.si
mailto:ciglic@iskratel.si
http://dx.doi.org/10.1016/j.comnet.2014.04.015
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


performance, some major adaptations need to be made to
the existing networking software, especially with regards
to improving its scalability, i.e., the ability to also perform
well on a larger number of processing cores.

The Linux operating system (OS) has proved to be a very
popular platform for the development of efficient soft-
ware-based networking devices and so in recent years it
has received a lot of interest from the scientific and indus-
trial communities [3] for the following three reasons: (1)
the open-source nature of the Linux OS, (2) the licensing
policy of the Linux source code, which allows its usage in
commercial products, and (3) the availability of the Linux
OS for several micro-architectures.

Several initiatives have been undertaken recently on the
Linux OS to make the use of multi-core COTS platforms
more efficient. The Symmetric Multiprocessing (SMP) Linux
kernel (LK) introduced the SMP-aware process scheduler,
which is able to distribute efficiently the software processes
across the available cores. Unfortunately, this solution does
not apply to Linux networking devices, which are based on
the interrupt (IRQ) driven mechanism. The network-traffic
reception, processing and transmission in the LK are there-
fore realized as IRQ routines to provide low latency of the
network packets. Because of additional mechanisms in the
SMP LK, which must provide the protection of shared data,
e.g., data locks and inter-process communications, the
Linux networking devices running on the SMP kernel may
not perform as well as networking devices running on the
Uni-processor version of the LK [4,5].

A methodology with the efficient utilization of the
multi-core architecture by retaining scalability must pro-
vide on-chip parallelism, which can be achieved in two
ways: (1) by parallelization of the network-processing
tasks and (2) by an efficient network-traffic distribution
among the processing cores. The first approach is based
on the functional composition concept [6] by compelling
a concurrent execution of the software tasks on several
processing cores, while retaining cache coherency. How-
ever, the parallelized tasks are often interdependent,
because they share the same system resources; therefore,
an effective method of synchronization between them
has to be provided. The benefits of this approach are lim-
ited by Amdahl’s law. The second approach, used in our
work, relies on network-traffic distribution, which is not
limited by Amdahl’s law, because it achieves parallelism
through the domain-decomposition concept [6], by imple-
menting multiple network-packet queues that are used for
the traffic distribution. The queues are mapped to available
processing cores by using the SMP Affinity mechanism [7],
which provides a mapping of the IRQ lines to the selected
cores. The traffic distribution can be packet-based or flow-
based [8].

The packet-based traffic distribution can balance net-
work packets, irrespective of their contents. Consequently,
the network packets of a connection, i.e., the network
packets’ flow from a particular source to a particular
destination, can take different paths through the network-
ing device and thus become reordered, which causes
significant problems for some network protocols. On the
other hand, the network traffic can be equivalently
distributed between different paths by using packet-based

distribution, which is often implemented with the round-
robin traffic distribution (RRTD) [8]. In this case, each avail-
able core is used in turn to process the packets, which
means the processing load is equivalently distributed
among all the cores. An improved version of the RRTD
method is the weighted RRTD [8], which assigns a weight
to each processing core, allowing an enhanced distribution
of the processing load.

The flow-based traffic distribution balances the net-
work traffic by examining the contents of each network
packet and ensuring that packets of the same flow do not
use different paths when they cross a network device. A
common implementation of this approach is the hash-
based traffic distribution (HBTD) [8], where the network
packets are assigned to flows according to hashes
calculated from the packets’ headers. More specifically, a
5-tuple combination of protocol identifier, destination IP
address, destination port, source IP address and source port
is normally used as an input to the Toeplitz hash function
[9], which is used to calculate the packet’s hash. Network
packets with identical hashes are processed on the same
processing core, so the packets cannot be reordered. How-
ever, the load distribution is relatively limited, especially if
the network traffic contains a small number of asymmetric
flows with significantly different packet rates. In this case
each high-packet-rate flow is processed on a single pro-
cessing core and, consequently, the overall utilization of
system resources is limited.

By default the Linux OS uses the HBTD approach, which
can be implemented entirely in software or can be assisted
by hardware engines incorporated into Network Interface
Cards (NICs). The software-based implementations, such
as the Receive Packet Steering (RPS), Receive Flow Steering
(RFS) and Transmit Packet Steering (XPS) [10], are incorpo-
rated into the LK, which allows a flexible network-traffic
distribution among processing cores with any type of
NIC. The behavior of these mechanisms can be modified
relatively easily by altering the LK source code. However,
if traffic-distribution engines are integrated into the NICs,
then mechanisms such as the Receive Side Scaling (RSS)
and Extended Message Signaled Interrupts [11] are used
to calculate the hashes and distribute the network traffic
accordingly. In this case the flexibility is reduced because
the control over these mechanisms is limited.

A new adaptive Token-Based Traffic-Distribution
(TBTD) method, which contributes to improved perfor-
mance in the throughput of the packets on multi-core
hardware platforms is proposed. It combines the flow-
based traffic distribution with the packet-based distribu-
tion and is able to adapt to the network traffic. As long as
the performance is not affected, the network traffic is dis-
tributed among the processing cores on a per-flow basis,
similar to the HBTD approach, by using RPS and RFS mech-
anisms. However, the proposed method allows network
packets of the same flow to be processed on several cores
if the characteristics of the network traffic limit the
utilization of the system resources. The cores that process
the packets are carefully selected with respect to the
properties of the hardware architecture in order to maxi-
mize the throughput and minimize the imposed packet
reordering.

20 T. Buh et al. / Computer Networks 69 (2014) 19–34



Download English Version:

https://daneshyari.com/en/article/451036

Download Persian Version:

https://daneshyari.com/article/451036

Daneshyari.com

https://daneshyari.com/en/article/451036
https://daneshyari.com/article/451036
https://daneshyari.com

