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a  b  s  t  r  a  c  t

A  major  challenge  for crop  research  in  the  21st  century  is how  to predict  crop performance  as  a  function  of
genetic  architecture.  Advances  in  “next  generation”  DNA  sequencing  have  greatly  improved  genotyping
efficiency  and reduced  genotyping  costs.  Methods  for characterizing  plant  traits  (phenotypes),  however,
have  much  progressed  more  slowly  over  the  past 30  years,  and  constraints  in  phenotyping  capability  limit
our ability  to  dissect  the genetics  of  quantitative  traits,  especially  those  related  to harvestable  yield  and
stress tolerance.  As  a case  in point,  mapping  populations  for major  crops  may  consist  of  20  or  more  fami-
lies, each  represented  by  as  many  as  200  lines,  necessitating  field  trials  with  over  20,000  plots  at  a  single
location.  Investing  in the resources  and  labor  needed  to  quantify  even  a few  agronomic  traits  for  linkage
with  genetic  markers  in  such  massive  populations  is  currently  impractical  for  most  breeding  programs.
Herein,  we  define  key criteria,  experimental  approaches,  equipment  and data  analysis  tools  required  for
robust, high-throughput  field-based  phenotyping  (FBP).  The  focus  is on  simultaneous  proximal  sensing
for  spectral  reflectance,  canopy  temperature,  and  plant  architecture  where  a  vehicle  carrying  replicated
sets of  sensors  records  data  on  multiple  plots,  with  the  potential  to  record  data  throughout  the crop  life
cycle. The  potential  to  assess  traits,  such  as  adaptations  to  water  deficits  or  acute  heat stress,  several  times
during a single  diurnal  cycle  is  especially  valuable  for quantifying  stress  recovery.  Simulation  modeling
and  related  tools  can  help  estimate  physiological  traits  such  as  canopy  conductance  and  rooting  capacity.
Many  of  the  underlying  techniques  and requisite  instruments  are  available  and  in use  for  precision  crop
management.  Further  innovations  are  required  to  better  integrate  the functions  of  multiple  instruments
and  to ensure  efficient,  robust  analysis  of the  large  volumes  of data  that  are  anticipated.  A  complement  to
the  core  proximal  sensing  is  high-throughput  phenotyping  of  specific  traits  such  as  nutrient  status,  seed
composition,  and  other  biochemical  characteristics,  as  well  as  underground  root  architecture.  The ability
to “ground  truth”  results  with  conventional  measurements  is  also necessary.  The  development  of  new
sensors  and  imaging  systems  undoubtedly  will  continue  to  improve  our ability  to  phenotype  very  large
experiments  or breeding  nurseries,  with  the  core  FBP  abilities  achievable  through  strong  interdisciplinary
efforts  that  assemble  and  adapt  existing  technologies  in  novel  ways.
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1. Introduction

Ensuring that agricultural production will be sufficient to sat-
isfy the needs of a human population likely to exceed 9 billion
by 2050 (http://www.unpopulation.org) presents a tremendous
challenge for plant science and crop improvement in the 21st
century. A fundamental step forward is to dramatically improve
phenotypic prediction based on the genetic composition of lines
or cultivars. By connecting genotype to phenotype, high yielding,
stress-tolerant plants can be selected far more rapidly and effi-
ciently than is currently possible. Spectacular advances in “next
generation” DNA sequencing are rapidly reducing the costs of geno-
typing (Shendure and Ji, 2008; Jackson et al., 2011). In contrast,
plant phenotyping has improved only slowly over the past 30 years,
and obtaining sufficient, relevant phenotypic data on a single plot
or plant-by-plant basis remains problematic. This is especially true
for complex traits such as abiotic stress tolerance and yield poten-
tial, which have particular relevance for crop improvement and
ultimately, commercial production. However, dissecting complex
traits requires an examination of thousands of lines (Myles et al.,
2009). Practical application through genomic selection (Goddard
and Hayes, 2007; Jannink et al., 2010) or genome-wide associa-
tion studies (Myles et al., 2009) will similarly involve phenotyping
thousands of genetically distinct lines (reference or association
populations) grown in replication across multiple environments
in order to assess differential expression of multiple genes (i.e.,
detection of genotype-by-environment interactions). Research to
improve phenotyping techniques is termed “phenomics” (follow-
ing the terminology of “-omics” from plant sciences; Furbank,
2009).

Recognition of the limits of current approaches in phenomics
has stimulated interest in high-throughput phenotyping methods
that can be used to characterize large numbers of lines or individual
plants accurately and that require a fraction of the time, cost and
labor of current techniques (Montes et al., 2007; Furbank, 2009).
Much of the discussion of phenotyping systems has focused on
intensive measurement of individual plants using platforms that
combine robotics and image analysis with controlled-environment
systems (e.g., Arvidsson et al., 2011). While acknowledging the
value of these systems for certain targeted applications, the use of
greenhouses and controlled environments to represent field envi-
ronments has well-known limitations. Limited greenhouse space
or chamber volumes often preclude allowing plants to flower and
set seed, making it impossible to assess effects of stresses during
reproductive growth. The soil volume that is provided for plants in
controlled environments usually is far less than that available to
plants in the field, affecting nutrient and water regimes and alter-
ing normal patterns of growth and development. Enclosed aerial
environments are also problematic for characterizing responses
relevant to field situations. In greenhouses and chambers, solar

radiation, wind speed and evaporation rates typically are lower
than under open-air conditions. Mechanical vibration can induce
physiological artifacts in plant growth (Biddington, 1986; Chehab
et al., 2009). Not surprisingly, researchers focusing on demonstra-
ble, field-level improvements in yield potential or abiotic stress
tolerance favor field-based phenotyping. Drought is a climatologi-
cal event, and Campos et al. (2004) argued that “drought tolerance
that impacts crop yield can only be assessed reliably in the field”.

Field-based phenotyping (FBP) is increasingly recognized as the
only approach capable of delivering the requisite throughput in
terms of numbers of plants or populations, as well as an accu-
rate description of trait expression in real-world cropping systems.
However, to date, most field-based phenotyping systems have
focused on rapid assessment of individual suites of traits such
as vegetation indices (Babar et al., 2006a,b) or root morphology
(Trachsel et al., 2011).

Through use of vehicles carrying multiple sets of sensors, a
FBP platform can transform the characterization of plant popu-
lations for genetic research and crop improvement. An example
of FBP requirements for maize (Zea mays L.) is instructive. The
maize nested association mapping (NAM) population consists of
25 biparental crosses, each represented by 200 lines (Buckler et al.,
2009; McMullen et al., 2009), giving a total of 5000 lines. Specialized
experimental designs combined with spatial analysis permit two
replicates, thus requiring 10,000 plots for a single treatment (e.g.,
well-watered or water-limited). Adding just one additional treat-
ment doubles the count to 20,000 plots. Using single-row, 1-m wide
by 4-m long plots and ignoring the need for walkways or borders,
the net row-length would be 80 km (roughly 50 miles), occupy-
ing 8 ha (20 acres). A person walking 3 km h−1 (2 mph) would need
about 27 h to visually score traits, assuming no stopping. Halting
at each plot for 30 s (e.g., to measure leaf conductance or chloro-
phyll concentration) would require an additional 165 h. Existing
and planned mapping populations for other crop species are of sim-
ilar scale (Table 1), so without even considering direct applications
in crop improvement, the need for high throughput is apparent.

Accomplishing FBP in a cost-effective manner will require
breakthroughs in techniques and research infrastructure. FBP
approaches will likely use wheeled or aerial vehicles to deploy mul-
tiple types of instruments that can measure plant traits on a time
scale of a few seconds per plot. However, even this sampling rate
will likely require multiple vehicles and/or multiple sets of sensors
on a single vehicle. Returning to the maize NAM example, a vehi-
cle measuring traits on single rows and traveling 2 km h−1 would
require over 40 h to cover the entire field. Using three vehicles with
eight sets of sensors per vehicle would reduce the required time to
less than 2 h, allowing up to 12 visits per day to any plot. Fig. 1 shows
a prototype FBP vehicle carrying sensors that measure plant height,
canopy temperature and spectral reflectance at three wavelengths
(Andrade-Sanchez et al., 2012). Observations are geo-referenced
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