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SIPPOM, a simulator for integrated pathogen population management, has been developed to assess and
rank Integrated crop management (ICM) strategies, at the regional scale. The input variables are weather
data, soil characteristics, the description of cropping systems (crop sequence and winter oilseed rape
crop management) and their spatial distribution, plus the initial size and genetic structure of pathogen
populations. Here, we use SIPPOM to simulate phoma stem canker severity, the genetic structure of the

glez’c"l‘g’gd&' pathogen populations, and the yield loss caused by the disease. Sensitivity analysis is conducted to quan-
Integrafed crop management tify hovy st_rongly state variables (sub-model output variables) resp_oncl to variat.ions ir_l parameters. Th.e
Modelling results indicate which parameters need to be more accurately estimated, and it elucidates the steadi-
Sensitivity analysis ness of the rankings of contrasting control strategies under various weather conditions when parameters
Parameters were varied. Due to the complexity of SIPPOM, the scope of this work was limited to a sensitivity analysis

of each sub-model independently. Three values of each parameter were tested under various environ-
mental conditions and crop management according to their expected or known effects on disease and
yield. Qualitatively speaking, variations in input variables and parameters provided sub-model output
variables that behaved as expected by experts. Parameters with the greatest effect on state variables and
that need to be estimated more accurately are for instance those related to pseudothecia maturation and
disease severity index estimates. Improvements are foreseen (e.g., the calculation of both the number of
phoma leaf spots and the severity disease index). Because the ranking of the simulated control strategies
remained steady, despite large variations in the simulated variables linked with variations in parameters,
the sensitivity analysis shows that the model, as it stands, can be used to compare and rank ICM strategies
with respect to their effectiveness. Possibilities of a sensitivity analysis of the overall model are discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Agricultural research is currently investigating alternative crop-
ping systems for pest management to limit the use of pesticides in
the field and preserve the efficiency of control methods over time
(Tilman et al., 2002; Aubertot et al., 2005). Integrated Pest Manage-
ment (IPM) combines different control methods (chemical, genetic,
cultural, biological, and physical) to meet economical, ecological,
and toxicological requirements (IOBC-SROP, 1973). In the case of
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disease management, genetic resistance, the main control method,
is known to lose its efficiency over time because pathogen popu-
lations quickly adapt to specific resistance genes under selection
pressure, sometimes leading to a complete loss of efficacy within
just a few years (e.g., Rouxel et al., 2003). To prolong resistance, it
is necessary to reduce the selection pressure exerted on pathogen
populations by applying a suitable strategy for the spatial and tem-
poral use of cultivars (McDonald and Linde, 2002), while, at the
same time, it is necessary to reduce the size of pathogen popula-
tions by combining cultural and chemical control methods (coined
‘Integrated Avirulence Management’ by Aubertot et al., 2006a).

In the case of airborne diseases, the dispersal of inoculum often
exceeds field boundaries. In addition, many diseases are polyetic.
Rather than approaching the issue from the often used field and
crop cycle scales, designing control strategies at a regional and
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multi-year scale should be further investigated (Aubertot et al.,
2006a). SIPPOM-WOSR, a simulator for integrated pathogen pop-
ulation management for winter oil seed rape (L6-Pelzer et al.,
2010), has been developed to assess and rank Integrated crop man-
agement (ICM) strategies, at these scales, accounting for cultural
practices, cultivar choice, and chemical control according to their
ability to bring phoma stem canker under control while preserving
the efficiency of specific resistances. The model simulates the dis-
ease severity and the genetic structure of this pathogen population
(in terms of pathotype frequencies) in each field of a given region,
as well as yield, gross margin, and environmental cost of cultural
practices applied to manage the crop and to control the disease.
Sensitivity analysis of a model aims at determining how sensi-
tive the outputs are to variability in any one of several elements,
such as the values of the parameters or the input variables (Monod
et al., 2006). In order to improve the predictive quality of a model,
Ruget et al. (2002) and Makowski et al. (2006) emphasized the
importance of pinpointing the parameters that need to be esti-
mated with a higher precision. In the case of complex models
such as SIPPOM, which has 316 parameters (Lo-Pelzer et al., 2010),
a sensitivity analysis to variations in parameters is particularly
useful as the estimation of some parameters can require specific
experiments that are time-consuming and often difficult to set
up (Makowski et al., 2006). Moreover, the aim of SIPPOM is to
rank strategies that would control phoma stem canker. Despite any
uncertainty in the estimations of parameters, the ranking of strate-
gies has to be stable when parameters are varied if the model is to
be used to this end. A sensitivity analysis to input variables in order
to identify which crop practices impact more outputs and to select
for ICM strategies (e.g., Breukers et al., 2007) is not to be neglected;
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however, given the complexity of SIPPOM, the sensitivity to param-
eters is an issue in and of itself.

The two objectives of the sensitivity analysis to variations in
parameters that is presented here were (i) to pinpoint the param-
eters that need to be estimated with a higher precision and (ii) to
test the steadiness of the rankings of contrasting control strategies
under various weather conditions when parameters were varied.
In the first part of this paper, the structure of SIPPOM-WOSR is
briefly described and the method used to conduct an independent
sensitivity analysis of each sub-model is detailed. This entails the
parameter values, the management strategies and weather condi-
tions in addition to the output variables. Parameters that need to be
estimated with a higher precision are identified and discussed, as
well as the behaviour of each sub-models depending on contrasting
input variable values. Finally, the next step, a sensitivity analysis of
the overall model to input variables, is evoked.

2. Materials and methods
2.1. Description of the SIPPOM-WOSR model

The SIPPOM-WOSR model has been described in detail by Lo-
Pelzer et al. (2010). It is composed of five sub-models (Fig. 1).

The primary inoculum production sub-model simulates the pri-
mary inoculum production of Leptosphaeria maculans, the causal
agent of phoma stem canker. Pseudothecia mature on stubble left
on the soil surface after harvest and produce ascospores, the pri-
mary inoculum (Hall, 1992). This sub-model calculates, between
the harvest of the crop in the previous season and the beginning of
winter in the given season, (i) the impact of tillage on vertical dis-
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Fig. 1. Flow chart of SIPPOM-WOSR. Sub-models, as well as parts of sub-models for the sensitivity analysis, are represented by squares, weather and soil input data by
diamonds, technical input data by ovals, and output data by rounded squares. Output variables of each sub-model (state variables of SIPPOM) are shown in italics. The
structure of pathogen populations is an input variable (initial structure), as well as an output variable.
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