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a  b  s  t  r  a  c  t

Where  and  how  to  sample  soils  in  highly  variable  tree plantations  are  important  to  soil testing  and  nutri-
ent  recommendation  for  rubber  trees  (Hevea  brasiliensis).  The  objectives  of  the  study  were  to  determine
optimal  sampling  sites  representing  means  of  key  soil nutrients  at  micro  scale  and  to  delineate  proba-
bility  maps  for  optimal  soil  sampling  sites  for nutrient  management  planning  for  rubber  trees.  The  study
was  conducted  in a rubber  tree  plantation  in  the  tropical  island  of Hainan,  China  in 2011.  A total  of  168
soil  samples  (0–0.2 m  in  the  soil  depth)  were  collected  in  a 1  m  × 0.5  m  grid  in equivalent  rectangles.  The
air-dried  soil  samples  were  then  analyzed  for  total  nitrogen  (TN)  and soil  organic  matter  (SOM)  vari-
ables.  Using  the  sequential  indicator  simulation  (SIS)  we discovered  that  sampling  sites  were  with  high
probability  for  both  soil  TN  and  SOM  within  10%  relative  standard  deviation  above  and  below  the  means.
The  high  probability  regions  of  uncertainties  were  near  the  rubber  rhizome  neck  areas  and  in  the  shrub
and  ruderal  zone  in the high  locations,  where  were  no-tillage  zones  and  at the  specific  non-cultivated
land between  the  adjacent  rubber  planting  strips  with  natural  vegetation  growth.  The  spatial  variability
in  TN and  SOM  variables  could  be attributed  to the combined  effects  of topographic  micro-features  and
tree  management  practices.  It was  concluded  that  SIS method  could  be  useful  for  effective  determina-
tion  of optimal  sites  for  soil sampling  for spatial  uncertainty  and  nutrient  management  in rubber  tree
plantations.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Rubber tree (Hevea brasiliensis)  is one of the main economic
species for many tropical countries in Asia, South America and
Africa (IRSG, 2010). In China, rubber plantation areas have reached
980 × 103 ha in 2009 with approximately 47% of the total planting
areas found in Hainan Island, southern China (Mo,  2010). Rubber
tree plantations, covering 13.8% of the total land area of Hainan
Island, have become the largest artificial ecosystem in the island.
Rubber trees are grown for latex extraction, which is done using
a multiannual tapping system that can last from 15 to 30 years or
even longer when management practices are adequate (Michels

Abbreviations: K-S, Kolmogorov-Smirnov; MSIS, multiple sequential indicator
simulation; RSD, relative standard deviation; SGS, sequential Gaussian simulation;
SIS,  sequential indicator simulation; SOM, soil organic matter; TN, total nitrogen.
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et al., 2012). There have been insufficient soil nutrients in rubber
plantations due to daily extraction of latex (Cheng et al., 2007). It is
absolutely necessary to add sufficient chemical fertilizers in order
to sustain rubber tree growth and maintain high yield of latex (He
et al., 1992).

While nutrient supplies are very important to enhance rubber
productivity of the trees for a long period of production, there has
been a serious difficulty on how to meet the nutrient requirements
of the trees effectively. At present, the best fertilizer recommen-
dation models are based on both foliar and soil nutrient status of
rubber trees (Chen et al., 2011). However, management practices
such as fertilizing in specific caves and building contour ledges in
rubber plantations often cause a highly spatial variability in surface
soil nutrients (Lin et al., 2013). Where and how to obtain represen-
tative soil in the highly variable topsoil are important to conduct
soil testing and nutrient recommendation. Such problems exist not
only in rubber tree plantations but also in other long-term cash tree
plantations such as mango orchards and citrus orchards in general.
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At present, the conventionality soil sampling site in rubber plan-
tation is in the shrub and ruderal zone, where is at the specific
free land between the adjacent rubber planting strips with vegeta-
tion growth of controlling nature (He and Huang, 1987). Whether
it could reliably represent the nutrient level in the rubber planta-
tion was unknown. Determining soil nutrient variability and then
putting forward feasible soil-sampling schemes to obtain a reliable
representative sample is the key to successful fertilizer recommen-
dation and environmental monitoring and assessment for rubber
plantations.

The kriging estimation has proven to be one of the most efficient
geostatistical methods in characterizing and predicting the vari-
ability of soil attributes (Ersahin and Brohi, 2006; Sun et al., 2003;
Baxter and Oliver, 2005; Lauzon et al., 2005; Chen et al., 2006).
However, the smoothing effect of the kriging method results in less
variation in the estimated values than in the observed values (Oliver
and Webster, 2014; Hofer et al., 2013). Recently, stochastic simula-
tions such as sequential Gaussian simulation (SGS) and sequential
indicator simulation (SIS) have been developed and applied to
reduce the inherent limitations in kriging analysis (Deutsch and
Journel, 1998; Goovaerts, 1997). The simulation approaches take
into account both spatial variation of the observed data at sampling
sites and variation in the estimations at unsampled sites (Juang
et al., 2004). Therefore, data should be treated as a whole to recover
the spatial structure aiming to estimate the real spatial distribution,
not just to minimize a local error variance (Li et al., 2008). Moreover,
information generated by sequential Gaussian simulation (SGS) or
sequential indicator simulation (SIS) techniques seems more real-
istic (Zhao et al., 2005).

The direct use of stochastic simulation to quantify the spatial
uncertainty has gradually become a powerful tool in geostatistical
studies. For example, the SGS technique was used to map  the spatial
distribution of soil water content and provide a quantitative mea-
sure of its spatial uncertainty in an 18 ha erosion experiment field
in Lower Austria (Delbari et al., 2009). The SIS method was  applied
for quantitatively assessing the uncertainty in mapping soil organic
carbon concentrations in Hebei Province, China (Zhao et al., 2005).
The SIS was also used to simulate spatial patterns of forest type
(Feng et al., 2006).

The SGS method assumes that data should follow multi-gaussian
distribution. However, as a method of non-parametric conditional
simulation, SIS does not require any assumption for the shape of
the conditional distribution (Goovaerts, 2001). Most of the exist-
ing studies have been conducted to assess the spatial changes of
continuity variables, with few studies for the measurement of cat-
egorical variables (Feng et al., 2006). In addition, there are rarely
studies of applying conditional simulation to simulate the optimal
soil sampling sites in tropical production systems.

The objectives of the current study were to determine the opti-
mal  sampling sites representing the means of key soil nutrients
at micro scale through assessing the spatial uncertainty in rubber
tree plantations and to delineate the probability maps for optimal
sampling sites for rubber tree nutrient management planning and
environmental monitoring.

2. Materials and methods

2.1. Study site

This study was conducted in 2011 on a rubber tree plantation of
84 m2 at Yangjiang State Farm (19◦18′47.8′′N and 109◦45′52.0′′E)
located in Qiongzhong, Hainan Island, southern China. The local
climate was of tropical monsoon type with a mean annual pre-
cipitation of 2000 mm and a mean annual temperature of 23.5 ◦C.
The soils were classified as Udic Ferralosols that were derived from

granites (Gong, 1999). This soil type was considered as Udic Ferral-
sol in the World Reference Base for Soil Resources (FAO, 1998), or
Oxisol in the USA Soil Taxonomy System (Staff, 2003).

The study area was  14 m × 6 m and the site elevation declined
(0.5 m)  from the east to the west across the area. There were nine
rubber trees planted within the experimental plots (Fig. 1). The
distance between two rubber trees in the same row was  7 m, and
the distance between two adjacent rows was 3 m. Conventional
fertilization caves were situated between two  rows and vertical
distance was  1.5 m to the rhizome neck. The existing fertilizer rec-
ommendations consisted of 2.0 kg compound fertilizers per tree
annually, applied in three portions in the middle of March, June and
September. North-south contour ledges were built within the plot
(Fig. 1). In Hainan, the management practices in selecting sites of
fertilizer caves and contour ledge, amounts and types of fertilizers
for rubber trees were relatively constant. Rubber plantations were
usually located in the hilly areas (Dong et al., 2012). The small plots
around nine rubber trees selected in the study were representative
of rubber tree plantations.

2.2. Soil sampling and analyses

Soil samples were collected before the third fertilization of
the year on August 28th, 2011. The plot was  divided into 168
grid-points in equivalent rectangles. Each rectangle sampling grid
measured 1 m × 0.5 m (Fig. 1). Within each rectangle, one soil sam-
ple was collected using a 8-cm-diameter auger. The sampling depth
was 0.2 m as proposed in the conventional soil testing method
(Chen et al., 2011; Lu, 1983). Subsoils collected at the fertilization
caves were used to preserve the outer edge of the contour ledges
in the sampling areas.

The soil samples were then air-dried and ground to pass through
a 2-mm sieve. The 168 soil samples were analyzed individually
for total nitrogen concentrations (TN) and soil organic matter con-
tent (SOM) because these two  soil variables were among the most
important soil quality components for rubber tree plantations. The
TN concentrations were analyzed using the Kjeldahl distillation
method and SOM was  determined using the potassium dichromate-
wet combustion procedure (Bao, 2000).

2.3. Methods of estimation of spatial uncertainty

2.3.1. SIS procedure
The SIS method was  applied to assess the uncertainty of optimal

soil sampling sites in the rubber tree plantation. The soil sites were
divided into two  categories, i.e. optimal sampling sites and non-
optimal sampling sites. Data sets of soil total nitrogen (TN) and soil
organic matter (SOM) were used in the estimation of the spatial soil
uncertainty. The SIS procedure can be found in De Cesare and Posa
(1995), Deutsch and Journel (1998), Goovaerts (2001) and Webster
and Oliver (2007). In summary, the SIS procedure is described as
follows:

(1) Suppose that we have observed n sample values {Z(xa), a =
1, 2, ...n} for the regionalized variable Z(x). Those sites, whose
observed values are within the range of mean ±10% relative stan-
dard deviation (noted as category Z), are considered as the optimal
soil sampling sites. Then, the observed values Z(xa) are transformed
into indicator codes. If the observed values belong to category Z, we
transform them as 1, otherwise as 0. The transformation formula
is:

i(xa, Z) = {1, Z(xa) ∈ Z
0,  Z(xa)/∈Z (1)
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